Atps matemática

1039 palavras 5 páginas
Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a0. Na função f(x) = ax + b, o número a é chamado de coeficiente de x e o número b é chamado termo constante. Veja alguns exemplos de funções polinomiais do 1º grau: f(x) = 5x - 3, onde a = 5 e b = - 3 f(x) = -2x - 7, onde a = -2 e b = - 7 f(x) = 11x, onde a = 11 e b = 0 O gráfico de uma função polinomial do 1º grau, y = ax + b, com a0, é uma reta oblíqua aos eixos Ox e Oy. Exemplo: Vamos construir o gráfico da função y = 3x - 1: Como o gráfico é uma reta, basta obter dois de seus pontos e ligá-los com o auxílio de uma régua: a) Para x = 0, temos y = 3 · 0 - 1 = -1; portanto, um ponto é (0, -1). b) Para y = 0, temos 0 = 3x - 1; portanto, e outro ponto é . Marcamos os pontos (0, -1) e no plano cartesiano e ligamos os dois com uma reta. x | y | 0 | -1 | | 0 | | | Já vimos que o gráfico da função afim y = ax + b é uma reta. O coeficiente de x, a, é chamado coeficiente angular da reta e, como veremos adiante, a está ligado à inclinação da reta em relação ao eixo Ox. O termo constante, b, é chamado coeficiente linear da reta. Para x = 0, temos y = a · 0 + b = b. Assim, o coeficiente linear é a ordenada do ponto em que a reta corta o eixo Oy.

FUNÇÃO COMPOSTA -São as funções em que o conjunto imagem de uma função f(x) serve de domínio para uma outra função g(x), que por sua vez gera um conjunto imagem A. A função composta é uma expressão que, dado um determinado número do domínio de f(x), nos leva directamente ao conjunto imagem A. Exemplo: Dadas as funções f(x) = 2x + 3 e g(x) = x - 1, uma função composta pode ser g(f(x)) = 2x + 2. Existem várias maneiras de se criar funções compostas. Podemos fazer f(g(x)), f(f(x)) etc.
FUNÇÃO EXPONENCIAL -Toda relação de dependência, em que uma incógnita depende do valor da outra, é

Relacionados

  • ATPS MATEMATICA
    1122 palavras | 5 páginas
  • ATPS MATEMÁTICA
    661 palavras | 3 páginas
  • ATPS Matemática
    1854 palavras | 8 páginas
  • ATPS MATEMATICA
    2431 palavras | 10 páginas
  • atps matematica
    1647 palavras | 7 páginas
  • Atps Matemática
    1880 palavras | 8 páginas
  • ATPS - Matemática
    1952 palavras | 8 páginas
  • atps de matematica
    1599 palavras | 7 páginas
  • Atps de Matemática
    1620 palavras | 7 páginas
  • ATPS Matematica
    2812 palavras | 12 páginas