ATPS ESTATISTICA Etapa 1 e2
Inicio da Estatística
Os métodos matemáticos da estatística emergiram da teoria das probabilidades, que remonta à correspondência entre Pierre de Fermat e Blaise Pascal (1654). Christiaan Huygens (1657) deu o tratamento científico mais antigo que se conhece sobre o assunto. A obra póstuma Ars Conjectandi (1713) de Jakob Bernoulli e Abraham de Moivre, The Doctrine of Chances (1718) tratou o assunto como um ramo da matemática. Na era moderna, a obra de Kolmogorov tem sido útil na formulação dos modelos fundamentais da teoria das probabilidades, imprescindíveis à estatística.
A teoria dos erros remonta à obra póstuma Opera Miscellanea (1722) de Roger Cotes, mas uma edição de memórias preparada por Thomas Simpson em 1755 (impressa em 1756) aplicou pela primeira vez a teoria à discussão dos erros na observação. A reimpressão (de 1757) dessas memórias estabelece o axioma de que erros positivos e negativos são igualmente prováveis, e que existem certos limites dentro dos quais todos os erros irão ocorrer; erros contínuos são discutidos e é fornecida uma curva de probabilidades.
Pierre-Simon Laplace (1774) fez a primeira tentativa de deduzir a regra para a combinação de observações dos princípios da teoria das probabilidades. Ele representou a lei das probabilidades dos erros através de uma curva. Ele deduziu uma fórmula para a média de três observações. Ele também deu (em 1781) uma fórmula para a lei de 'facilidade de erro' (um termo devido a Joseph Louis Lagrange, 1774), mas que levou a equações não tratáveis. Daniel Bernoulli (1778) introduziu o princípio do produto máximo de probabilidade de um sistema de erros concorrentes.
O método dos mínimos quadrados, que foi usado para minimizar erros na medição de dados, foi publicado independentemente por Adrien-Marie Legendre (1805), Robert Adrain (1808) e Carl Friedrich Gauss (1809). Gauss usou o método na sua famosa predição de onde se localizava o planeta anão Ceres. Outras provas foram dadas por Laplace