atps calculo
.
Engenharia Civil
ATPS – Calculo II
Taubaté
2014
Etapa 1
Aula-tema: Conceito de Derivada e Regras de Derivação
Passo 1
Pesquisar o conceito de velocidade instantânea a partir do limite, com.
Comparar a fórmula aplicada na física com a fórmula usada em cálculo e explicar o significado da função v (velocidade instantânea), a partir da função s (espaço), utilizando o conceito da derivada que você aprendeu em cálculo, mostrando que a função velocidade é a derivada da função espaço.
Dar um exemplo, mostrando a função velocidade como derivada da função do espaço, utilizando no seu exemplo a aceleração como sendo a somatória do último algarismo que compõe o RA dos alunos integrantes do grupo.
Velocidade instantânea: ao trafegar em uma estrada você pode observar no velocímetro do carro que a velocidade indicada varia no decorrer do tempo. Esta velocidade que você lê no velocímetro em um determinado instante é denominada velocidade instantânea. Para determinar esta velocidade tem-se que calcular o limite de (S/t), para t tendendo a zero; Já observamos que o conceito de velocidade média está associado a dois instantes de tempo. Por exemplo, t1 e t2. E escrevemos v (t1,t2) para o módulo dessa velocidade média.
Por outro lado, concluímos que o módulo da velocidade média entre esses instantes de tempo pode ser obtido a partir do segmento de reta secante ao gráfico da posição em função do tempo. Esse segmento de reta deve ligar os pontos A e B do gráfico, pontos estes que correspondem aos instantes de tempo t1 e t2 .
Exemplo: Função x = 4 t²+ t3 + 7t – 8
a) Velocidade no tempo 3s V=d.x 8t + 3t² +7 d.t
V=8.3+3.3²+7
V= 58 m/s
b) Aceleração no tempo 2s
V=d.x 8t + 3t² + 7 d.t a=d.v 8+6.t d.t
a= 8+6.t
a=8+6 .2
a=20 m/s²
Passo 2
Montar uma tabela, usando seu exemplo acima, com os cálculos e plote num gráfico as funções