Atps 1° serie algebra linear e geometria analitica
Etapa 1
Passo 1. Relação de livros pesquisados Álgebra linear e suas Aplicações / David C.Lay – 2ºEdição
Álgebra linear/ Boldrini / Costa Figueiredo/ Wetzler – 3ºEdição
Álgebra linear/ Terry Lawson/ tradução: Elza F. Gomide/ Editora Edgard Blucher LTDA.
Livro escolhido: Álgebra linear e suas Aplicações / David C.Lay – 2ºEdição Passo 2.
Foram feitas pesquisas sobre empresas e descobrimos que o uso de matrizes são uteis no planejamento. Para explicar utilizamos os exemplos:
1)Uma montadora( na região existem algumas General Motors, Wolkswagem) produz três modelos de veículos, standard ( A), luxo (B) e superluxo( C ), neles podem ser instalados três modelos de pneus F(aro13”), X(aro14”) e Y(aro15”), air bag(D) e direção hidráulica(E) conforme o modelo. A matriz β mostra a quantidade de equipamentos montados em conforme o modelo.
|A |B C |
|β = |F 4 0 0 |
|X |0 4 0 |
|Y |0 0 4 |
|D |2 4 6 |
|E |0 1 1 5x3 |
Na matriz α temos o número de veículos produzidos em uma semana:
|α = |A 600 |
|B |500 |
C 150 3x1
O resultado quantidade de equipamentos utilizados na produção de veículos pela montadora foi:
|β. α = |F 2400 |
|X |2000 |
|Y |600 |
|D |4100 |
|E |650 5x1 |
|Site:|http://pt.wikipedia.org/wiki/Determinante |
Passo 3.
Com o resultado do estudo percebemos que precisamos calcular a determinante de uma matriz para se obter um numero real chamada determinante da matriz A.
Definição de determinante: Seja A o conjunto das matrizes com m linhas e n colunas sobre um corpo K. Pode-se provar que existe uma única função F com as seguintes propriedades:
1. F é n-linear e alternada nas linhas das matrizes; 2. F(ln) = 1, onde ln é a matriz identidade Esta função chama-se determinante.
O Determinante de uma matriz A representa-se por [A] ou por det(A)
Propriedades
1. O determinante também é uma função n-linear e