aibo
Com as sucessivas tentativas, a garotada vai concluir que o resultado que buscamos (o produto do dobro do primeiro pelo triplo do segundo) independe dos fatores em questão. Aí, sim, é hora de mostrar que a Matemática possui uma maneira de escrever esse tipo de raciocínio generalizado, simplificando o processo (no exemplo, ab = 9.786 e c = 2a x 3b = 6ab = 6 x 9.786 = 59.256, sendo "c" o número pedido no enunciado). A notação obtida pela aplicação de propriedades multiplicativas (comutativa e associativa, aprendidas no estudo da aritmética) aponta que a resposta esperada (o "c") é seis vezes o resultado inicial, sem que seja necessário descobrir "a" e "b".
Desafios com conceitos geométricos também colaboram na construção da generalização. Por exemplo, uma sequência de bolinhas que forme quadrados perfeitos. A primeira tem uma bola:
FIGURA 1
figura 1
A segunda leva duas bolinhas na base e duas na altura, totalizando 4:
FIGURA 2
figura 2
A terceira tem três na base e três na altura, somando 9: FIGURA 3
figura 3
Desafie a classe a descobrir quantas bolinhas terá a figura 5. Observando os quadrados anteriores, alguns alunos vão notar que o total de bolinhas é dado pelo número da figura multiplicado por ele mesmo. Outros argumentarão que o resultado pode ser obtido multiplicando o