matemática
quanto à utilização de sua capacidade de processamento. Após um tempo de
análise, verificou-se que a relaçãoentre a quantidade Q de usuários (em mil pessoas) conectados ao sistema se relacionava com o tempo T (em horas) por meio de uma função de segundo grau da forma Q= -T2 + 8T Com base nessa informação:a )Descreva que tipo de parábola representa a relação entre Usuários (Q) e Tempo (T), concavidade para cima ou para baixo? Justifique detalhadamente.
b)Supondo que o servidor entre em operaçãoàs 8hs da manhã, em que horário do
dia ocorrerá o maior pico de usuários? Em que horário do dia o número de usuários
voltará a ficar igual a zero?
c)Faça uma representação gráfica da funçãoda quantidade Q.
a)a parábola é decrescente porque o termo "a" da função é negativo.
b) sendo 8 horas da manhã=> t=0
9 horas da manhã=> t=1
...
O maior pico ocorrerá as 12 horas (t=4),jáque Q(4)>Q(3)>Q(5).
O número de usuários será zero quando Q=0, logo:
-T^2+8t=0
T^2-8t=0
t(t-8)=0
t=0 ou t=8
Portanto será as 8 horas da manhã e as 16 horas que o número de usuários serázero.determinado servidor utilizado no gerenciamento de um sistema foi monitorado
quanto à utilização de sua capacidade de processamento. Após um tempo de
análise, verificou-se que a relaçãoentre a quantidade Q de usuários (em mil pessoas) conectados ao sistema se relacionava com o tempo T (em horas) por meio de uma função de segundo grau da forma Q= -T2 + 8T Com base nessa informação:a )Descreva que tipo de parábola representa a relação entre Usuários (Q) e Tempo (T), concavidade para cima ou para baixo? Justifique detalhadamente.
b)Supondo que o servidor entre emoperação às 8hs da manhã, em que horário do
dia ocorrerá o maior pico de usuários? Em que horário do dia o número de usuários
voltará a ficar igual a zero?
c)Faça uma representação gráfica