Matemática
Detector de neutrinos Super Kamiokande - Universidade de Tokyo (Japão)
Os Neutrinos foram previstos por Wolfigang Pauli, pois a energia liberada em certas reações era menor do a que teoria mostrava. Deveria então haver uma partícula neutra com a energia que faltava sendo liberada durante essas reações. Em 1956 os neutrinos foram finalmente detectados por Frederick Reines (1918-1998) e Clyde L. Cowan Jr (1919-1974), emitidos de um reator nuclear. Mas, como detectar um Neutrino? Para detectar um Neutrino são necessários enormes reservatórios de substâncias que produzam alguma reação detectável. No experimento de Clyde e Reines foi usado um grande tanque contendo uma solução aquosa de cloreto de cádmio. Quando os neutrinos vindos de um reator nuclear próximo reagissem com alguma partícula produziriam luz. Detectores especiais envolvendo o tanque captariam a fraca luminosidade produzida pelo choque.
Em outra experiência no ano 1968, Raymond Davis Jr. (1914-2006) e seus colaboradores decidiram detectar estes neutrinos colocando um tanque com 600 toneladas (378 000 litros) de percloroetileno (C2Cl4), no fundo de uma mina de ouro a 1500m de profundidade. Como aproximadamente um quarto dos átomos de cloro está no isótopo 37, ele calculou que dos 100 bilhões de neutrinos solares que atravessam a Terra por segundo, alguns ocasionalmente interagiriam com um átomo de cloro, transformando-o em um átomo de argônio. Como o argônio37 produzido é radiotivo, é possível isolar e detectar estes poucos átomos de argônio dos mais de 1030 (1 seguido de 30 zeros) átomos de cloro no tanque. Periodicamente o número de átomos de argônio no tanque seria medido, determinando o fluxo de