Matemática Aplicada
Uma função é uma relação entre duas variáveis x e y tal que o conjunto de valores para x é determinado, e a cada valor x está associado um e somente um valor para y.
*A relação é expressa por y = f(x).
*O conjunto de valores de x é dito domínio da função.
*As variáveis x e y são ditas, respectivamente, independente e dependente.
Funões de segundo grau
Uma função para ser do 2º grau precisa assumir algumas características, pois ela deve ser dos reais para os reais, definida pela fórmula f(x) = ax2 + bx + c, sendo que a, b e c são números reais com a diferente de zero. Concluímos que a condição para que uma função seja do 2º grau é que o valor de a, da forma geral, não pode ser igual a zero.
Então, podemos dizer que a definição de função do 2º grau é: f: R→ R definida por f(x) = ax2 + bx + c, com a Є R* e b e c Є R.
Numa função do segundo grau, os valores de b e c podem ser iguais a zero, quando isso ocorrer, a equação do segundo grau será considerada incompleta.
Uma função para ser do 2º grau precisa assumir algumas características, pois ela deve ser dos reais para os reais, definida pela fórmula f(x) = ax2 + bx + c, sendo que a, b e c são números reais com a diferente de zero. Concluímos que a condição para que uma função seja do 2º grau é que o valor de a, da forma geral, não pode ser igual a zero.
Então, podemos dizer que a definição de função do 2º grau é: f: R→ R definida por f(x) = ax2 + bx + c, com a Є R* e b e c Є R.
Numa função do segundo grau, os valores de b e c podem ser iguais a zero, quando isso ocorrer, a equação do segundo grau será considerada incompleta.
Propriedades da Função Exponencial
Sendo a > 0 e a ≠ 1, tem-se que ax=at↔ x = t;
A função exponencial ƒ(x)=ax é crescente em todo seu domínio se, e somente se, a>1;
A função exponencial ƒ(x)=ax é decrescente em todo seu domínio se, e somente se,