Matematica
O conjunto dos números complexos é o conjunto que possui maior cardinalidade, afinal ele contém todos os outros conjuntos. É necessário, pois, compreender os processos das operações (aritméticas, trigonométricas, algébricas) envolvendo elementos desse conjunto, assim como a representação geométrica dos números complexos.
Portanto, nessa seção serão abordados assuntos como: concepções básicas do número complexo, operações aritméticas com números complexos, operações trigonométricas com os números complexos, o Plano de Argand-Gauss, entre outros artigos que se relacionam com os números complexos – números de grande importância e aplicabilidade.
O conjunto dos números complexos é representado por IC, e definido como o conjunto dos pares ordenados compostos por números reais, onde são definidas a adição e a multiplicação e a igualdade.
• Adição: ( a, b) + ( c, d ) = ( a + c, b + d ).
• Multiplicação: ( a, b) . ( c, d ) = ( ac – bd, ad + bc ).
• Igualdade: ( a, b) = ( c, d ) , onde a = c, b = d.
Deve-se considerar que o conjunto IR está contido no conjunto IC. Sendo que, por exemplo, o número real a possui como parte complexa 0. Ele será o número complexo (a, 0).
Unidade imaginária é indicada pela letra i , sendo que seu valor é ( 0, 1), onde se realizarmos i2 teremos i.i = ( 0, 1). ( 0, 1) = ( 0.0 – 1.1, 0.1 + 1.0 ) = (–1,0).
Assim temos a notação