looucuv geografico

737 palavras 3 páginas
a,a,b,d,d,d) equivale a ##Ø#ØØ###Ø
(b,b,b,c,d,e) equivale a Ø###Ø#Ø#Ø#
(c,c,c,c,c,c) equivale a ØØ######ØØ
Cada símbolo possui 10 lugares com exatamente 6# e 4Ø. Para cada combinação existe uma correspondência biunívoca com um símbolo e reciprocamente. Podemos construir um símbolo pondo exatamente 6 pontos em 10 lugares. Após isto, os espaços vazios são prenchidos com barras. Isto pode ser feito de C(10,6) modos. Assim:

Crep(5,6) = C(5+6-1,6)
Generalizando isto, podemos mostrar que:

Crep(m,p) = C(m+p-1,p)

Propriedades das combinações
O segundo número, indicado logo acima por p é conhecido como a taxa que define a quantidade de elementos de cada escolha.

Taxas complementares

C(m,p)=C(m,m-p)
Exemplo: C(12,10) = C(12,2)=66.

Relação do triângulo de Pascal

C(m,p)=C(m-1,p)+C(m-1,p-1)
Exemplo: C(12,10)=C(11,10)+C(11,9)=605

Número Binomial
O número de combinações de m elementos tomados p a p, indicado antes por C(m,p) é chamado Coeficiente Binomial ou número binomial, denotado na literatura científica como:

Exemplo: C(8,2)=28.

Extensão: Existe uma importante extensão do conceito de número binomial ao conjunto dos números reais e podemos calcular o número binomial de qualquer número real r que seja diferente de um número inteiro negativo, tomado a uma taxa inteira p, somente que, neste caso, não podemos mais utilizar a notação de combinação C(m,p) pois esta somente tem sentido quando m e p são números inteiros não negativos. Como Pi=3,1415926535..., então:

A função envolvida com este contexto é a função gama. Tais cálculos são úteis em Probabilidade e Estatística.

Teorema Binomial
Se m é um número natural, para simplificar um pouco as notações, escreveremos mp no lugar de C(m,p). Então:

(a+b)m = am+m1am-1b+m2am-2b2+m3am-3b3+...+mmbm
Alguns casos particulares com m=2, 3, 4 e 5, são:

(a+b)2 = a2 + 2ab + b2
(a+b)3 = a3 + 3 a2b + 3 ab2 + b3
(a+b)4 = a4 + 4 a3b + 6 a2b2 + 4 ab3 + b4
(a+b)5 = a5 + 5 a4b + 10 a3b2 +

Relacionados