juros compostos
M = P . (1 + i)n Importante: a taxa i tem que ser expressa na mesma medida de tempo de n, ou seja, taxa de juros ao mês para n meses. Para calcularmos apenas os juros basta diminuir o principal do montante ao final do período:
J = M - P Exemplo: Calcule o montante de um capital de R$6.000,00, aplicado a juros compostos, durante 1 ano, à taxa de 3,5% ao mês. (use log 1,035=0,0149 e log 1,509=0,1788) Resolução: P = R$6.000,00 t = 1 ano = 12 meses i = 3,5 % a.m. = 0,035 M = ? Usando a fórmula M=P.(1+i)n, obtemos: M = 6000.(1+0,035)12 = 6000. (1,035)12 Fazendo x = 1,03512 e aplicando logaritmos, encontramos: log x = log 1,03512 => log x = 12 log 1,035 => log x = 0,1788 => x = 1,509 Então M = 6000.1,509 = 9054. Portanto o montante é R$9.054,00
Relação entre juros e progressões No regime de juros simples: M( n ) = P + n r P No regime de juros compostos: M( n ) = P . ( 1 + r ) n Portanto: num regime de capitalização a juros simples o saldo cresce em progressão aritmética num regime de capitalização a juros compostos o saldo cresce em progressão geométrica TAXAS EQUIVALENTES Duas taxas i1 e i2 são equivalentes, se aplicadas ao mesmo Capital P durante o mesmo período de tempo, através de diferentes