hjghjghjg

435 palavras 2 páginas
Logaritmo Na matemática, o logaritmo (do grego: logos= razão e arithmos= número), de base b, maior que zero e diferente de 1, é uma função que faz corresponder aos objectos x a imagem y tal que b^y = x. Usualmente é escrito como logb x = y. Por exemplo: 3^4 = 81, portanto log_3 81 = 4. Em termos simples o logaritmo é o expoente que uma dada base deve ter para produzir certa potência. No último exemplo o logaritmo de 81 na base 3 é 4, pois 4 é o expoente que a base 3 deve usar para resultar 81.1 2
O logaritmo é uma de três funções intimamente relacionadas. Com bn = x, b pode ser determinado utilizando radicais, n com logaritmos, e x com exponenciais.
Um logaritmo duplo é a inversa da exponencial dupla. Um superlogaritmo ou hiper-logaritmo é a inversa da função superexponencial. O superlogaritmo de x cresce ainda mais lentamente que o logaritmo duplo para x grande.
Um logaritmo discreto é uma noção relacionada na teoria finita de grupos. Para alguns grupos finitos, acredita-se que logaritmo discreto seja muito difícil de ser calculado, enquanto exponenciais discretas são bem fáceis. Esta assimetria tem aplicações em criptografia. Para cada base (b em bn), existe uma função logaritmo e uma função exponencial; elas são funções inversas.3 Com bn = x:
Exponenciais determinam x quando dado n; para encontrar x, se multiplica b por b (n) vezes.
Logaritmos determinam n quando dado x; n é o número de vezes que x precisa ser dividido por b para se obter 1. Depois que seu logaritmo estiver dividido some novamente com o coeficiente e chegará a um resultado parcialmente correto. ma função logb(x) é definida quando x é um número real positivo e b é um número real positivo diferente de 1. Veja identidades logarítmicas para várias leis que definem as funções logarítmicas. Logaritmos podem também ser definidos para argumentos complexos. Isso é explicado na página do logaritmo natural.
Para inteiros b e x, o número logb(x) é irracional (i.e., não é um

Relacionados