atps
È fácil demonstrar que apenas a média é insuficiente para descrever um grupo de dados. Dois grupos podem ter a mesma média, mas serem muito diferentes na amplitude de variação de seus dados. Por exemplo:
-Grupo A (dados observados): 5; 5; 5.
-Grupo B (dados observado): 4; 5; 6.
-Grupo C (dados observados): 0; 5; 10.
A média dos três grupos é a mesma (5), mas no grupo “A” não há variação entre os dados, enquanto no grupo “B” a variação é menor que no grupo “C”. Dessa forma, uma maneira mais completa de apresentar os dados (além de aplicar uma medida de tendência central como a média) é aplicar uma medida de dispersão. As principais medidas de dispersão são:
-Amplitude total: é a diferença entre o valor maior e o valor menor de um grupo de dados;
-Soma dos quadrados: é baseada na diferença entre cada valor e a média da distribuição;
-Variância: é a soma dos quadrados dividida pelo número de observações do grupo menos 1;
-Desvio padrão: é expresso na mesma medida das variaçõe (Kg, cm, m³ ...)
Fonte de pesquisa : http://www.infoescola.com/estatistica/medidas-de-dispersao/
Estatística Descritiva
Variáveis quantitativas
Figura 1 - Histograma representando a distribuição da variável "peso à nascença"
Os métodos para sumariar variáveis contínuas e discretas são os mesmos. No entanto, poderá haver situações nas quais poderá ser mais informativo usar tabelas de frequências ou gráficos de barras para variáveis discretas, nomeadamente quando existem, na prática, poucos valores que a variável discreta pode assumir (por exemplo, número de filhos).
De uma geral, a tabela de frequências não é, muito útil para descrever ou sumariar variáveis quantitativa pois grande parte dos valores terão frequência 1.