Análises conbinatorias

1576 palavras 7 páginas
Combinatória

O triângulo de Pascal, intimamente relacionado como oteorema binomial.
A combinatória é um ramo da matemática que estuda coleções finitas de objetos que satisfaçam certos critérios específicos, e se preocupa, em particular, com a "contagem" de objetos nessas coleções (combinatória enumerativa) e com a decisão se certo objeto "ótimo" existe (combinatória extremal) e com estruturas "algébricas" que esses objetos possam ter (combinatória algébrica).
O assunto ganhou notoriedade após a publicação de "Análise Combinatória" por Percy Alexander MacMahon em 1915. Um dos destacados combinatorialistas foi Gian-Carlo Rota, que ajudou a formalizar o assunto a partir da década de 1960. O engenhosoPaul Erdős trabalhou principalmente em problemas extremais. O estudo de como contar os objetos é algumas vezes considerado separadamente como um campo da enumeração.
Um exemplo de problema combinatório é o seguinte: Quantas ordenações é possível fazer com um baralho de 52 cartas? O número é igual a 52! (ou seja, "cinquenta e dois fatorial"), que é o produto de todos os números naturais de 1 até 52. Pode parecer surpreendente o quão enorme é esse número, cerca de 8,065817517094 × 1067. Comparando este número com alguns outros números grandes, ele é maior que o quadrado doNúmero de Avogadro, 6,022 × 1023, quantidade equivalente a um mol".

Princípios aditivo e multiplicativo
Princípio aditivo: Dados os conjuntos , dois a dois disjuntos, em que tem exatamente elementos, então o número de elementos da união é dado por .
Princípio multiplicativo: Se um evento pode ocorrer de maneiras diferentes, então o número de maneiras de ocorrer os eventos de forma sucessiva é dado por .
[editar]Permutações simples Ver artigo principal: Permutação
Definimos permutações simples como sendo o número de maneiras de arrumar n elementos em n posições em que cada maneira se diferencia pela ordem em que os elementos aparecem. Aplicando o princípio da multiplicação

Relacionados

  • Analise conbinatória
    962 palavras | 4 páginas