217064550183

942 palavras 4 páginas
PROGRESSÃO ARITIMÉTICA

DEFINÇÃO

Consideremos a sequência ( 2, 4, 6, 8, 10, 12, 14, 16).
Observamos que, a partir do segundo termo, a diferença entre qualquer termo e seu antecessor é sempre a mesma:
4 – 2 = 6 – 4 = 10 – 8 = 14 – 12 = 16 – 14 = 2
Sequencias como esta são denominadas progressões aritméticas (PA).A diferença constante é chamada de razão da progressão e costuma ser representada por r. Na PA dada temos r = 2.
Podemos, então, dizer que:

Progressão aritmética é a sequência de números onde, a partir do primeiro termo,todos são obtidos somando uma constante chamada razão.

São exemplos de PA:

• • (5, 10, 15, 20, 25, 30) é uma PA de razão r = 5
• • (12, 9, 6, 3, 0, -3) é uma PA de razão r = -3
• • (2, 2, 2, 2, 2,...) é uma PA de razão r = 0

Notação

PA( a1, a2, a3, a4, ...., an)
Onde:
a1= primeiro termo an = último termo, termo geral ou n-ésimo termo n = número de termos( se for uma PA finita ) r = razão

Exemplo: PA (5, 9, 13, 17, 21, 25) a1 = 5 an = a6 = 25 n = 6 r = 4

Classificação

QUANTO A RAZAO:

(5, 10, 15, 20, 25, 30) é uma PA de razão r = 5.
Toda PA de razão positiva ( r > 0 ) é crescente

(12, 9, 6, 3, 0, -3) é uma PA de razão r = -3
Toda PA de razão negativa é decrescente.

• • (2, 2, 2, 2, 2,...) é uma PA de razão r = 0
Toda PA de razão nula ( r = 0 ) é constante ou estacionária.

QUANTO AO NÚMERO DE TERMOS:
(5, 15, 25, 35, 45, 55) é uma PA de 6 termos e razão r = 10.
Toda PA de n° de termos finito é limitada.

(12, 10, 8, 6, 4, 2,...) é uma PA de infinitos termos e razão r = -2
Toda PA de n° de termos infinito é ilimitada.

PROPRIEDADES

P1:Três termos consecutivos

Numa PA, qualquer termo,a partir do segundo, é a média aritmética do seu antecessor e do seu sucessor.

Exemplo:

Consideremos a PA(4, 8, 12, 16, 20, 24, 28) e escolhamos três termos consecutivos quaisquer: 4, 8, 12 ou 8, 12, 16 ou ... 20, 24, 28.
Observemos que o termo médio é

Relacionados