O "Teorema" das 4 cores é falso!
O "Teorema" das 4 cores tem uma longa história. E também uma longa história de pseudo-demonstrações falhadas, quer por amadores quer por grandes matemáticos. Tim "Nerd" Ragnar parece ter dado uma machadada fatal naquilo que se julgava ser uma demonstração correcta - demonstração a que, curiosamente, os matemáticos mais "puros" sempre torceram o nariz por ser uma demonstração assistida por computador (na verdade, a primeira deste género) e ser impossível a um ser humano verificá-la.
O problema das quatro cores data de 1852, quando Francis Guthrie, na altura estudante de liceu, estava a colorir um mapa dos condados de Inglaterra. Guthrie constatou que, com algum esforço, conseguia colori-lo com a condição de condados contíguos terem cores diferentes usando apenas 4 cores diferentes. Intrigado, foi perguntar ao irmão mais velho, Frederick, já na Universidade, se isto se passava com qualquer mapa.
Frederick Guthrie não conseguiu responder, e foi perguntar ao seu eminente professor em Cambridge, o célebre Augustus de Morgan, se sabia resolver o problema. De Morgan pensou, pensou... e a resposta era não. Tinha nascido o problema das quatro cores.
Aqui começa a história das débâcles matemáticas, que agora tem pelos vistos um novo episódio. A primeira referência na literatura matemática à conjectura das quatro cores deve-se a Arthur Cayley em 1878. Um ano depois aparece a primeira "demonstração" pelo matemático Kempe; o seu erro foi apontado por Heawood 11 anos depois.
Outra demonstração errada deve-se a Tait, em 1880; o erro no raciocínio foi apontado por Petersen em 1891. Durante estes peiodos a conjectura das quatro cores foi considerada um "Teorema", e é provavelmente por isso que as empresas de lápis de cor (e hoje em dia de canetas para transparências) vendem pacotinhos de 4, e não 3 ou 5, canetas: julgava-se que 4 cores eram suficientes.
Seguiram-se contribuições matemáticas importantes de Birkhoff, que permitiram a Franklin