C LCULO DIFERENCIAL E INTEGRA
DC - fev 2015 - Prof. Roberto Mendonça
CAPÍTULO I - LIMITES
O estudo dos limites é fundamental para o entendimento das ideias de derivadas e integrais. Neste momento, trabalharemos apenas a ideia intuitiva e informal de limite, sem as definições rigorosas e as demonstrações formais de suas propriedades. A ideia intuitiva de limite é trabalhada geometricamente por meio de seqüências e pela análise do gráfico de uma função.
A noção de limite de uma função, e o uso do deste é de fundamental importância na compreensão e, conseqüentemente, no desenvolvimento de grande quantidade de tópicos no campo das ciências que lidam com a Matemática. O Cálculo Diferencial e Integral (CDI) é um ramo da matemática, toda ela, fundamentada no conceito de limite.
O conceito de limite de uma função f é uma das ideias fundamentais que distinguem o Cálculo da Álgebra e da Trigonometria. Suponha que um físico deseje obter quanto vale determinada medida, quando a pressão do ar é zero. Na verdade é impossível obter o vácuo perfeito. Então um procedimento a ser adotado é experimentalmente efetuar-se essas medidas com valores cada vez menores de pressão, se os valores desta medida tendem para um determinado número L, admite-se que no vácuo ela seria igual ao valor L.
Se representarmos por x a pressão e à medida que quisermos for dada por f(x), então podemos representar esse resultado por:
Esta é uma situação em que se aplica o conceito matemático de limites. Tal conceito é de fundamental importância para o desenvolvimento teórico de derivadas e integrais que possuem várias aplicações na física, eletricidade, mecânica, etc.
Limites: Breve histórico
Uma preocupação já presente entre os gregos antigos consistia na busca de procedimentos para encontrar