A física aplicada no Pêndulo Simples
Um pêndulo simples é um corpo ideal que consiste de uma partícula suspensa por um fio inextensível e de massa desprezível. Quando afastado de sua posição de equilíbrio e solto, o pêndulo oscilará em um plano vertical sob à ação da gravidade; o movimento é periódico e oscilatório, sendo assim podemos determinar o período do movimento.
A figura acima exemplifica um pêndulo de comprimento L, sendo m a massa da partícula. No instante mostrado, o fio faz um ângulo com a vertical. As forças que atuam em m são o peso m.g e a tração da corda T. O movimento será em torno de um arco de círculo de raio L; por isto, escolheremos um referencial em que um dos eixos seja radial e o outro tangente ao círculo. O peso m.g pode ser decomposto numa componente radial de módulo m.g.cos e numa componente tangencial m.g.sen . A componente radial da resultante é a força centrípeta que mantém a partícula na trajetória circular. A componente tangencial é a força restauradora onde o sinal negativo indica que F se opõe ao aumento de .
Note que a força restauradora não é proporcional ao deslocamento angular e sim a sen . O movimento portanto não é harmônico simples. Entretanto, se o ângulo for suficientemente pequeno, sen será aproximadamente igual a em radianos, com diferença cerca de 0,1% e o deslocamento ao longo do arco será x = L . e, para ângulos pequenos, ele será aproximadamente retilíneo. Por isto, supondo sen ,
Obteremos:
F = - m.g. = - m.g. (x/L) = - (m.g/L).x (2)
Para pequenos deslocamentos, a força restauradora é proporcional ao deslocamento e tem o sentido oposto. Esta é exatamente a condição para se ter movimento harmônico simples e, de fato, a equação (2) acima tem a mesma forma que a equação, F = - k . x, com m.g/L representando a constante k. Para pequenas amplitudes, o período T (tempo de um ciclo) de um pêndulo pode ser obtido fazendo-se k = m. g /L
T = 2 (m / k)1/2 = 2 (m / (m .g / L)) 1/2
T = 2 (L