vb bgfb
Os princípios que levaram à elaboração da Geometria Euclidiana eram baseados nos estudos do ponto, da reta e do plano. O ponto era considerado um elemento que não tinha definição plausível, a reta era definida como uma sequência infinita de pontos e o plano definido através da disposição de retas.
As definições teóricas da Geometria de Euclides estão baseadas em axiomas, postulados, definições e teoremas que estruturam a construção de variadas formas planas. Os polígonos são representações planas que possuem definições, propriedades e elementos.
Podemos relacionar à Geometria plana os seguintes conteúdos programáticos:
Ponto, reta e plano,Posições relativas entre retas,Ângulos,Triângulos,Quadriláteros,Polígonos,Perímetro e Áreas de regiões planas.
►Reta
Para formarmos uma reta precisamos de no mínimo dois pontos. A reta é representada por letras minúsculas (a, b, .... , r, s, t, .....,z), e em suas extremidades temos setas, pois a reta é infinita para os dois sentidos.
• Para fazermos a relação de ponto e reta usamos a relação de pertinência:
A t (A pertence a t)
Encontramos retas em algumas coisas do nosso cotidiano: como o encontro de duas paredes, lado de uma mesa, cabo de vassoura, são aproximações grosseiras de retas, mas que nos ajuda a visualizar melhor.
Além de usarmos as letras minúsculas na representação das retas, podemos utilizar os seus pontos na sua representação:
Temos no exemplo acima uma reta a letra que a representa é t. Pertencem a reta t os pontos A e G, então podemos fazer uma outra representação para a