Uso do calculo vetorial
O Vetor é uma “construção mental”, um conceito. “Um vetor é um ente que se caracteriza por seu módulo, direção e sentido”.
"Uma grandeza vetorial fica perfeitamente definida quando ela possui valor numérico, unidade, direção e sentido".
Quando uma grandeza física necessitar possuir estes quatro parâmetros ela poderá ser definida por um vetor.
O vetor é um segmento orientado que representa, geometricamente, uma grandeza vetorial.
Na verdade o conceito de vetores deverá se aplicado a tudo que você consiga descrever e necessite de módulo, direção e sentido, pois dessa forma a informação estará completa.
A representação matemática de uma grandeza vetorial é o vetor representado graficamente por um segmento de reta orientado que apresenta as seguintes características:
Módulo do vetor - é dado pelo comprimento do segmento em uma escala adequada.
Direção do vetor - é dada pela reta suporte do segmento.
Sentido do vetor - é dado pela seta colocada na extremidade do segmento.
Muitas operações algébricas nos números reais possuem formas análogas para vetores. Vetores podem ser adicionados, subtraídos, multiplicados por um número e invertidos. Essas operações obedecem às conhecidas leis da álgebra: comutatividade, associatividade e distributividade. Os vetores desempenham um papel importante na física: velocidade e aceleração de um objeto e as forças que agem sobre ele são descritas por vetores. É importante ressaltar, no entanto, que os componentes de um vetor físico dependem do sistema de coordenadas usado para descrevê-lo.
Há a necessidade do calculo vetorial para obtermos respostas coerentes para o estudo de grandezas vetoriais. Como ex: um corpo qualquer sofrendo inumeras forças, onde o calculo vetorial nos fornece uma resultante, possibilitando, assim a análise do movimento.
Na Engenharia Civíl o calculo veorial pode ser utilizado
---No dimensionamento de vigas e treliças, onde estão