Técnico
Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano.
Denominamos cone ao sólido formado pela reunião de todos os segmentos de reta que têm uma extremidade em um ponto P (vértice) e a outra num ponto qualquer da região.
Elementos do cone
Em um cone, podem ser identificados vários elementos:
1. Vértice de um cone é o ponto P, onde concorrem todos os segmentos de reta. 2. Base de um cone é a região plana contida no interior da curva, inclusive a própria curva. 3. Eixo do cone é quando a base do cone é uma região que possui centro, o eixo é o segmento de reta que passa pelo vértice P e pelo centro da base. 4. Geratriz é qualquer segmento que tenha uma extremidade no vértice do cone e a outra na curva que envolve a base. 5. Altura é a distância do vértice do cone ao plano da base. 6. Superfície lateral de um cone é a reunião de todos os segmentos de reta que tem uma extremidade em P e a outra na curva que envolve a base. 7. Superfície do cone é a reunião da superfície lateral com a base do cone que é o círculo. 8. Seção meridiana de um cone é uma região triangular obtida pela interseção do cone com um plano que contem o eixo do mesmo.
Classificação do cone
Ao observar a posição relativa do eixo em relação à base, os cones podem ser classificados como retos ou oblíquos. Um cone é dito reto quando o eixo é perpendicular ao plano da base e é oblíquo quando não é um cone reto. Ao lado apresentamos um cone oblíquo.
Observação: Para efeito de aplicações, os cones mais importantes são os cones retos. Em função das bases, os cones recebem nomes especiais. Por exemplo, um cone é dito circular se a base é um círculo e é dito elíptico se a base é uma região elíptica.
Observações sobre um cone circular reto
Um cone circular reto é denominado cone de revolução por ser obtido pela rotação (revolução) de um triângulo retângulo em torno de um de seus catetos