tuti
Observe o triângulo retângulo ao lado:
Ele é denominado triângulo retângulo por possuir um ângulo reto, ângulo este entre a base (lado horizontal) e a altura (lado vertical).
Cada um destes lados é denominado cateto. O outro lado, o maior deles, é denominado hipotenusa.
Segundo o Teorema de Pitágoras temos que a soma do quadrado da medida dos catetos é igual ao quadrado da medida da hipotenusa, ou de forma simplificada:
A soma dos quadrados dos catetos é igual ao quadrado da hipotenusa.
Nomeando os catetos de a e b e a hipotenusa de c, o teorema é representado pela seguinte expressão:
Ou ainda por:
Demonstração do Teorema de Pitágoras
Teorema é qualquer proposição que precisa ser demonstrada para que seja aceita.
Há várias formas de demonstrarmos o Teorema de Pitágoras, mas aqui iremos apresentar somente uma, que além de ser fácil de se explicar, também é fácil de se entender.
Vamos tomar 4 dos triângulos acima e montar uma figura como esta ao lado:
Como podemos observar, com os quatro triângulos formamos uma figura contendo dois quadrados, um interno e outro externo.
Os lados do quadrado interno têm medida igual a c. Já a medida dos lados do quadrado externo é igual a + b.
A área do quadrado externo é igual a soma da área dos quatro triângulos mais a área do quadrado interno. Isto pode ser assim representado:
Desenvolvendo esta expressão, cujo primeiro membro é um produto notável, concluímos a prova do teorema:
Neste nosso exemplo o cateto a é menor que o b, mas a demonstração se comprovaria mesmo que os catetos tivessem o mesmo comprimento, ou que medida de a fosse maior que a medida de b.
Exemplos da Utilização do Teorema de Pitágoras
Qual é a medida da hipotenusa de um triângulo retângulo cujos catetos medem 66 cm e 88 cm?
Vamos assumir que a = 66 e que b = 88. Aplicando o teorema temos:
A hipotenusa mede 110 cm. A base de um triângulo retângulo mede 48 mm e a sua hipotenusa 80