Trigonometria
ESCOLA DR. ALFREDO JOSÉ BALBI
UNITAU
APOSTILA
FUNÇÃO DO 1º GRAU
PROF. CARLINHOS
NOME:
NO:
1
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS
FUNÇÃO DO 1º GRAU
DEFINIÇÃO Chama-se função do 1.° grau toda função definida de Exemplos: f(x) = 5x – 3, onde a = 5 e b = – 3 (função afim) f(x) = 6x, onde a = 6 e b = 0 (função linear) f(x) = x, onde a = 1 e b = 0 (função identidade) GRÁFICO DA FUNÇÃO DO 1.º GRAU O gráfico de uma função do 1.º grau é uma reta não-paralela nem ao eixo x nem ao eixo y. Seu domínio é D(f) = e sua imagem é Im(f) = . 1.º exemplo: Construir o gráfico da função y = 2x + 3 (a = 2 > 0) Resolução: Sabendo que o gráfico da função y = 2x + 3 é do 1.º grau, precisamos somente conhecer dois de seus pontos para traçá-lo. Esses dois pontos podem ser obtidos atribuindo-se dois valores arbitrários para x e determinando suas ../imagens (y). Para x = 0 y = 3 Para x = – 2 y = -1 Para x = – 1 y = 1 por f(x) = ax + b com a, b e a 0.
2.º exemplo: Construir o gráfico da função f (x) = – 2x + 3 (a = – 2 < 0)
Conclusão: Se a > 0, a função y = ax + b é crescente. Se a < 0, a função y = ax + b é decrescente. ZERO OU RAIZ DA FUNÇÃO DO 1.º GRAU Chama-se zero ou raiz da função do 1.º grau f(x) = ax + b o valor de x para o qual f(x) = 0, logo: ax + b = 0 ⇒ ax = -b ⇒ x = -
b . a
f(x) x raiz ou zero
o -
b a
x
Observação: geometricamente, o zero da função do 1.º grau é a abscissa do ponto em que a reta corta o eixo x. Então, no exemplo, temos:
2
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS
COEFICIENTES ANGULAR E LINEAR DA RETA: O coeficiente de x, a, é chamado coeficiente angular da reta, que é o valor da tangente do ângulo do α que reta forma com o eixo 0x, medido do eixo para reta no sentido anti-horário. O termo constante b, é, chamado coeficiente linear da reta, que é, o valor da ordenada do ponto em que a reta corta o eixo 0y.
f(x)
a = tg α α
o x coeficiente linear (b)
Observando os gráficos dos exemplos