Trabalho
2
1. ax +bx+c = a x b 2 Δ , com a≠ 0 e Δ= b2 – 4ac. 2a 4a 2 ax2+bx+c = a(x–x’)(x–x”), com x’= b Δ e x”= b Δ
2a 2a
H) A FUNÇÃO LOGARÍTMO BASE ‘a’: 1. logab = c se, e só se, ac = b e (logau)’ = 1. Se
1 ∙ 1 ∙u’. Lna u
I) APLICAÇÃO DA FUNÇÃO EXPONENCIAL NATURAL: dy = Ky, y > 0, e y = yo quando x = 0, então y = yo∙ekx. dx
B) TRIGONOMETRIA CIRCULAR: 1. tgα= senα ; cotα = 1 cosα tgα
; secα = 1
cosα
; cscα = 1 . senα 2. sen2α + cos2α = 1 ; 1 + tg2α = sec2α ; 1 + csc2α = cot2α . 3. sen(–α) = – senα ; cos(– α) = cosα. 4. sen(π ± α) = ∓ senα ; cos(π ±α) = – cosα ; tg(π +α ) = tgα. 5. sen(α ± β) = senα cosβ ± senβ cosα. 6. cos(α ± β) = cosα cosβ ∓ senα senβ e tg(α ± β) = tgα tgβ .
1 tgαgαt
J) As Funções Trigonométricas(circulares) Inversas: 1. arcsenx = y ⇔ seny = x e –π/2 ≤ y ≤ π/2. 2. arccosx = y ⇔ cosy = x e 0 ≤ y ≤ π. 3. arctgx = y ⇔ tgy = x e –π/2 < y < π/2. 4. arccotx = y ⇔ coty = x e 0 < y < π. 5. arcsecx = y ⇔ secy = x e 0 ≤ y < π/2 ou π ≤ y < 3π/2. 6. arccscx = y ⇔ cscy = x e 0 < y ≤ π/2 ou π < y ≤ 3π/2. 7. (arcsenu)’ = –(arccosu)’ = 8.(arctgu)’ = –(arccotu)’ =
1 1 u2 u' .
7. sen(2α)=2senα cosα ; cos(2α)=cos α – sen α ; tg(2α)= 2tgα . 1 tg 2α
2 2
8. sen( )= ± 1 cosα ; cos( )= ± 1 cosα ; tg( )= ± 1 cosα .
2 2 senα 2 pq pq sen(p q) ) cos ( ) ; tgp + tgq = 9. senp + senq = 2sen ( ; 2 2 cosp cosq 2
2
1 u' . 1 u 2 1 9. (arcsecu)’ = –(arccscu)’ =
u u2 1
u' .
pq pq ) cos ( ) e 2 2 pq pq ) sen ( ). cosp – cosq = – 2sen ( 2 2 10. sena cosb = 1 [sen(a+b) + sen(a– b)] ; 2 cosa cosb = 1 [cos(a+b) + cos(a–b)] e 2 sena senb = – 1 [cos(a+b) – cos(a–b)]. 2
cosp + cosq = 2cos (
1 u' dx = arcsenu + K = –arccosu + L. 1 u2 11. 1 2 u'dx = arctgu + K = –arccotu + L. 1 u 1 12. u' dx = arcsecu + K = –arccscu + L.
10.
u u2 1
J) AS