Trabalho
COLISÃO INELÁSTICA
24 de fevereiro de 2011
1
Objetivo
Obter o coeciente de restituição entre uma bola e o chão.
2
Teoria
Uma colisão entre dois corpos pode ser classicada considerando-se a energia cinética do conjunto antes e depois da colisão.
Se a energia cinética do conjunto se conserva, a colisão é chamada totalmente elástica; se parte da energia cinética se transforma em outra forma de energia, a colisão é inelástica. Quando os dois corpos permanecem unidos após a colisão, esta é dita totalmente inelástica. Considere uma bola que, sendo solta do repouso da altura inicial com uma velocidade
vi .
Hi ,
chega ao chão
Imediatamente após o contato com o chão, a bola se deforma e segue sofrendo uma compressão,
até atingir o repouso (situação de compressão máxima). A partir desse instante, ela passa a se expandir e salta, com velocidade vf ,
indo até uma outra altura. Observe que, em geral, a bola deixa o chão com uma velocidade menor que a
velocidade que possuía quando atingiu o chão, alcançando uma altura
Hf ,
que é menor que a altura inicial da qual ela
foi solta. A gura 1 ilustra esta situação.
Hi
Hf
vf
vi
Figura 1: A bola cai de uma altura atingindo a altura
Hi
e chega ao solo com velocidade
vi .
Após a colisão, ela sai com velocidade
vf
Hf .
Dene-se o coeciente de restituição,
r,
de uma colisão desse tipo como
r=
|vf |
.
|vi |
(1)
O coeciente de restituição pode ser utilizado como um indicativo de quão elástico é o choque entre a bola e o chão. A perda de energia cinética nessa colisão é dada pela diferença entre a energia cinética da bola ao colidir com o chão e a energia cinética da mesma ao deixar o chão, ou seja
∆K =
1
1
2
2
mvf − mvi ,
2
2
que, em termos do coeciente de restituição, pode ser colocada na forma
∆K =
1 mv 2 r2 − 1
2 i
.
(2)
Observe que esta variação de energia cinética é negativa,