Trabalho matematica
O crescente uso dos computadores tem feito com que a teoria das matrizes seja cada vez mais aplicada em áreas como Economia, Engenharia, Matemática, Física, dentre outras. Vejamos um exemplo.
A tabela a seguir representa as notas de três alunos em uma etapa:
| Química | Inglês | Literatura | Espanhol | A | 8 | 7 | 9 | 8 | B | 6 | 6 | 7 | 6 | C | 4 | 8 | 5 | 9 |
Se quisermos saber a nota do aluno B em Literatura, basta procurar o número que fica na segunda linha e na terceira coluna da tabela.
Vamos agora considerar uma tabela de números dispostos em linhas e colunas, como no exemplo acima, mas colocados entre parênteses ou colchetes:
Em tabelas assim dispostas, os números são os elementos. As linhas são enumeradas de cima para baixo e as colunas, da esquerda para direita:
Tabelas com m linhas e n colunas ( m e n números naturais diferentes de 0) são denominadas matrizes m x n. Na tabela anterior temos, portanto, uma matriz 3 x 3.
Veja mais alguns exemplos: é uma matriz do tipo 2 x 3 é uma matriz do tipo 2 x 2
Algumas matrizes, por suas características, recebem denominações especiais.
Matriz linha: matriz do tipo 1 x n, ou seja, com uma única linha. Por exemplo, a matriz A =[4 7 -3 1], do tipo 1 x 4.
Matriz coluna: matriz do tipo m x 1, ou seja, com uma única coluna. Por exemplo,, do tipo 3 x 1
Matriz quadrada: matriz do tipo n x n, ou seja, com o mesmo número de linhas e colunas; dizemos que a matriz é de ordem n. Por exemplo, a matriz é do tipo 2 x 2, isto é, quadrada de ordem 2.
Numa matriz quadrada definimos a diagonal principal e a diagonal secundária. A principal é formada pelos elementos aij tais que i = j. Na secundária, temos i + j = n + 1.
Veja:
a11 = -1 é elemento da diagonal principal, pis i = j = 1 a31= 5 é elemento da diagonal secundária, pois i + j = n + 1 ( 3 + 1 = 3 + 1)
Matriz nula: matriz em que todos os elementos são nulos; é representada por 0m x n. .
Matriz diagonal: matriz quadrada em que