trabalho de fisica
A velocidade a que as ondas de luz se propagam no vácuo é independente tanto do movimento da fonte de onda quanto do referencial inercial do observador, de modo que a velocidade da luz emitida por uma fonte em alta velocidade é a mesma que a de outra fonte estacionária. No entanto, a frequência da luz (que define a cor) e a energia pode depender de movimento da fonte relativo ao observador, devido ao efeito Doppler relativístico. Todos os observadores que medem a velocidade da luz no vácuo chegam ao mesmo resultado. Essa invariância da velocidade da luz foi postulada por Einstein em 1905, motivado pela teoria de Maxwell do eletromagnetismo e a falta de evidências para suportar o éter luminífero; e desde então tem sido consistentemente confirmado por diversos experimentos. Somente é possível verificar experimentalmente que a velocidade da luz de ida e volta (por exemplo, de uma fonte para um espelho e então de volta) independe do referencial, porque é impossível medir a velocidade de ida da luz (por exemplo, de uma fonte para um detector distante) sem uma convenção sobre como os relógios na fonte e no detector devem ser sincronizados. No entanto, adotando a sincronização de Einstein para os relógios, a velocidade de ida da luz fica igual à velocidade da luz de ida e volta, por definição. A teoria especial da relatividade explora as consequências dessa invariância de c com a suposição de que as leis da física são as mesmas em todos os referenciais inerciais. Uma consequência é que c é a velocidade a que todas as partículas sem massa e toda radiação eletromagnética, incluindo a luz visível, se propaga (ou move) no vácuo. É também a velocidade de propagação da atração gravitacional, na teoria geral da relatividade.
Outra consequência é a rejeição da noção de um único sistema absoluto de referência (o éter). Antes acreditava-se que o universo era imerso em uma substância conhecida como éter (identificável como o espaço absoluto) em