Trabalho De Calculo Num Rico
Truncamento São erros provenientes da utilização de processos que deveriam ser infinitos ou muito grandes para a determinação de um valor e que, por razões práticas, são truncados. Estes processos infinitos são muito utilizados na avaliação de funções matemáticas, tais como, exponenciação, logaritmos, funções trigonométricas e várias outras que uma máquina pode ter.
Exemplo: Uma máquina poderia calcular a função seno(x) e exponencial(x) utilizando as seguintes técnicas:
Fazendo truncamento:
A solução é a de interromper os cálculos quando uma determinada precisão é atingida. De uma maneira geral, pode-se dizer que o erro de truncamento pode ser diminuído até chegar a ficar da ordem do erro de arredondamento; a partir desse ponto, não faz sentido diminuir-se mais, pois o erro de arredondamento será dominante.
Arredondamento Ao se aplicar um método numérico, os erros devidos aos valores iniciais, intermediários e finais conduzem a um erro global (diferença entre o exato e o obtido) também chamado de arredondamento. Erros iniciais são os cometidos no arredondamento dos dados iniciais. Os erros intermediários são decorrentes dos erros cometidos durante a aplicação do método numérico e os erros finais decorrentes da apresentação final do resultado.
Os tipos de arredondamentos mais conhecidos são: Arredondamento para baixo ou por falta;
Arredondamento para cima ou por excesso; Arredondamento para o numero de maquina mais próximo.
Critério de Arredondamento: no cálculo manual, ao registrar um valor aproximado, costuma-se usar a seguinte regra: 1. somar meia unidade após a última casa decimal a conservar; 2. desprezar as demais casas
Assim, com 2 números significativos tem-se:
O uso deste critério limita o erro a meia unidade da última casa conservada:
Os valores aproximados obtidos podem ser inferiores (valor aproximado por falta) ou superiores (valor