Tabela integrais
Prof. MSc. Henrique Starick
f1 ∫xα dx = xα + 1 + C para α ≠ - 1 α + 1 f2 ∫1 dx = ln|x| + C x f3 ∫ex dx = ex + C f4 ∫ax dx = ax + C, a > 0 lna f5 ∫cos x dx = sen x + C f6 ∫sen x dx = -cos x + C f7 ∫sec2 x dx = tg x + C f8 ∫cosec2 x dx = -cotg x + C f9 ∫sec x . tag x dx = sec x + C f10 ∫cosec x . cotg x dx = -cosec x + C
f11 ∫ 1 dx = arc sen x + C √ 1 – x2
f12 ∫ 1 dx = arc tag x + C 1 + x2
f13 ∫ 1 dx = arc sec x + C x√x2 – 1
f14 ∫ cosh x dx = - senh x + C
f15 ∫ senh x dx = cosh x + C
f16 ∫ sech2 x dx = - tagh x + C
f17 ∫ cotgh2 x dx = cosech x + C
f18 ∫ sech x . tagh x dx = -sech x + C
f19 ∫cosech x . cotgh x dx = cosech x + C
f20 ∫ 1 dx = arc senh x + C = ln(x +√1+x2) + C √ 1 + x2
f21 ∫ 1 dx = arc cosh x + C = ln( x + √x2 - 1 ) + C √x2 - 1
f22 ∫ 1 dx = arc tagh x + C = 1 ln 1 + x + C 1 - x2 2 1 – x f23 ∫ 1 dx = - arc cotgh x + C = 1 ln x + 1 + C x2 – 1 2 x – 1
f24 ∫ 1 dx = - arc sech x + C = -ln 1 + √ 1 - x2 +C x√1- x2 x
f25 ∫ 1 dx = - arc cosech x + C = -ln 1 +√ 1- x2 + C |x|√1+ x2 x
F26 ∫tag x dx = - ln| cos x | + C
F27 ∫cotg x dx = ln |sen x| + C
F28 ∫sec x dx = ln | sec x + tag x | + C
F29 ∫cosec x dx = - ln | cosec x + cotag x | + C
F30 ∫sec x . tag x dx = sec x + C
F31 ∫cosec x . cotag x dx = - cosec x +