Sistemas lineares

2613 palavras 11 páginas
1 – Equação linear

Entenderemos por equação linear nas variáveis (incógnitas) x1, x2, x3, … , xn , como sendo a equação da forma a1.x1 + a2.x2 + a3.x3 + … + an.xn = b onde a1, a2, a3, … an e b são números reais ou complexos. a1, a2, a3, … an são denominados coeficientes e b, termo independente.

Nota: se o valor de b for nulo, diz-se que temos uma equação linear homogênea.

Exemplos de equações lineares:

2x1+3x2 =7(variáveis ou incógnitas x1 e x2,coeficientes 2 e 3,e termo independente7)

3x + 5y = 5 (variáveis ou incógnitas x e y, coeficientes 3 e 5, e termo independente 5)

2x + 5y + z = 17 (variáveis ou incógnitas x, y e z, coeficientes 2,5 e 1 e termo independente 17)

-x1 + 3x2 -7x3 + x4 = 1 (variáveis x1, x2 , x3 e x4, coeficientes -1, 3, -7, e 1 e termo independente 1)

2x + 3y + z – 5t = 0 (variáveis ou incógnitas x, y, z e t, e termo independente nulo).
Logo, este é um exemplo de equação linear homogênea.

2 – A solução de uma equação linear

Já estamos acostumados a resolver equações lineares de uma incógnita (variável), que são as equações de primeiro grau. Por exemplo: 2x + 8 = 36, nos leva à solução única x = 14. Já, se tivermos uma equação com duas incógnitas (variáveis), por exemplo x + y = 10, a solução não é única, já que poderemos ter um número infinito de pares ordenados que satisfazem à equação, ou seja: x=1 e y=9 [par ordenado (1,9)], x =4 e y =6 [par ordenado (4,6)], x = 3/2 e y 17/2 [par ordenado (3/2,17/2)], … , etc.

Consideremos agora, uma equação com 3 incógnitas.

Seja por exemplo: x + y + z = 5

As soluções, serão x=1, y=4 e z=0, uma vez que 1+4+0 =5; x=3, y=7 e z=-5, uma vez que
3+7- 5=5; x=10, y=-9 e y=4 (uma vez que 10-9+4=5); … , que são compostas por 3 elementos, o que nos leva a afirmar que as soluções são osternos ordenados (1,4,0), (3,7,-5) , (10, -9, 4), … , ou seja, existem infinitas soluções (um número infinito de ternos ordenados) que satisfazem à equação dada.

De uma forma geral, as

Relacionados

  • sistema lineares
    525 palavras | 3 páginas
  • sistemas lineares
    1839 palavras | 8 páginas
  • Sistema Linear
    1224 palavras | 5 páginas
  • Sistemas lineares
    938 palavras | 4 páginas
  • Sistema Linear
    1508 palavras | 7 páginas
  • sistema lineares
    923 palavras | 4 páginas
  • Sistemas lineares
    1472 palavras | 6 páginas
  • Sistemas lineares
    798 palavras | 4 páginas
  • Sistema Lineares
    762 palavras | 4 páginas
  • Sistemas Lineares
    684 palavras | 3 páginas