Recursos Patrimoniais
9.1. Análise de Curto Prazo
Se retomarmos o exemplo da função de produção exposto acima, em que a quantidade produzida é condicionada pelas quantidades de capital e trabalho utilizadas, teremos:
q = f(L, K)
Onde,
• q: quantidade produzida;
• L: quantidade de mão-de-obra (insumo variável);
• K: quantidade de capital (insumo fixo).
Considerando o fator capital fixo, e o fator trabalho variável, a quantidade produzida terá sua variação dependendo apenas da variação da quantidade utilizada do insumo variável, associada à contribuição constante do insumo fixo, em cada combinação de fatores utilizados. Neste caso, a mão-de-obra é o fator variável, e a função de produção poderá ser expressa como: q = f (L)
Outros conceitos importantes para a análise da teoria da produção são os conceitos de produto total, produto médio (ou produtividade média) e produtividade marginal dos fatores de produção.
O produto total é a quantidade de produto que se obtém ao utilizar o insumo variável, mantendo-se fixa a quantidade dos demais insumos. O produto médio ou produtividade média do fator é o quociente entre as variações do produto total e as variações da quantidade utilizada do insumo. Em outras palavras, a produtividade média representa a variação do produto total quando se verifica a variação no fator de produção analisado.
Em termos esquemáticos, temos:
1. Produtividade média da mão-de-obra:
2. Produtividade média do capital:
A produtividade marginal dos fatores é a variação do produto, dada uma variação de uma unidade na quantidade do fator produção, num determinado período de tempo.
Assim, temos:
3. Produtividade Marginal da mão-de-obra:
4. Produtividade Marginal do Capital:
9.1.1. A Lei dos Rendimentos Decrescentes
Um conceito importante na análise da teoria da produção é a Lei dos Rendimentos Decrescentes, que descreve o comportamento da taxa de variação da produção quando apenas um insumo variar, todos os demais permanecendo