polinomip
575 palavras
3 páginas
Os polinômios, a priori, formam um plano conceitual importante na álgebra, entretanto possuem também uma relevante importância na geometria, quando se deseja calcular expressões que envolvem valores desconhecidos.A definição de polinômio abrange diversas áreas, pois podemos ter polinômios com apenas um termo na expressão algébrica, como por exemplo: 2x, y, 4z, 2, 5, etc. Mas podemos possuir polinômios com uma infinidade de termos. Por exemplo:
P(x)=an xn+a(n-1) x(n-1)+...+a2 x2+a1 x+a0
Como podemos notar, polinômios são compostos pelas várias expressões algébricas, desde aquelas que envolvem apenas números, até as que apresentam diversas letras, potências, coeficientes, entre outros elementos dos polinômios.
Os polinômios se encontram em um âmbito da matemática denominado álgebra, contudo a álgebra correlaciona o uso de letras, representativas de um número qualquer, com operações aritméticas. Portanto, podemos, assim, efetuar as operações aritméticas nos polinômios, que são: adição, subtração, divisão, multiplicação, potenciação e radiciação.
grande maioria das pessoas que estão em processo de aprendizagem em matemática sempre buscam aplicações imediatas para os conteúdos. Não que esse deva ser um caminho único a ser seguido, pelo contrário, a compreensão de seu valor abstrato, perpassante do território da realidade, é indubitavelmente importante. Faço aqui um comparativo entre duas matemáticas, que por mais que sejam admiráveis, tem seus campos estudados por pesquisadores diferentes. É sabido que os matemáticos reconhecem a existência dessas duas matemáticas, porém dificilmente dominam as duas simultânea e profundamente.
Falo da matemática utilitária e da matemática abstrata. Enquanto a primeira se relaciona com as questões diárias, os problemas, as demandas, ou seja, questões atuais que requerem soluções imediatas, a outra se refere ao pensamento abstrato, o conhecimento pensado e criado no campo da imaginação, do mundo teórico. É bom frisar