Plano inclinado
Plano Inclinado Plataforma usada para obter as medidas.
Figura 01: diagrama de forças em um bloco sobre um plano inclinado, incluindo a força de atrito.
A força de atrito estático Fate é dada pelo produto do coeficiente de atrito estático µe com a normal N:
Fate = µe.N
E a força de atrito cinético Fatc é dada pelo produto do coeficiente de atrito cinético µc com a normal N:
Fatc = µc.N
Deste modo, podemos observar que, para um objeto não deslizar em um plano inclinado, o coeficiente de atrito estático tem de ser maior que o valor da tangente do ângulo θ. Isto pode ser obtido isolando o coeficiente de atrito estático da expressão para a força de atrito estático. Veja: µe = Fate/N
Quando o móvel está na iminência de deslizar, a força de atrito estático é igual ao valor da força Px.
Se:
Px = Fate
Então
Fate = P.senθ
Sabendo que
Py = N
Que equivale à relação
N = P.cosθ
O coeficiente de atrito estático então é dado por: µe = P.senθ/P.cosθ µe = senθ/cosθ
Como
Tgθ = senθ/cosθ
Então
µe = tgθ
Como queríamos demonstrar. Procede-se da mesma forma para obter o coeficiente de atrito cinético para o qual o objeto desliza neste plano com velocidade constante.
Dados Experimentais Medidas Ângulo
1 29º
2 33º
3 24º
4 28º
5 31º
6 32º
7 19º
8 21º
9 30º
10 31º
11 22º
12 22º
Valor médio (x ̅) (em graus) Desvio padrão (em graus) Erro ∆x (mm) Precisão da plataforma (em graus)
24,90º
2,20º
0,12º
1,0º
Cálculos experimentais
Cálculos do desvio padrão:
Dp (med.1) = (29-24,90)^2/11 = 0,37º
Dp (med.2) = (33-24,90)^2/11 = 0,74º
Dp (med.3) = (24-24,90)^2/11 = 0,08º
Dp (med.4) = (28-24,90)^2/11 = 0,01º
Dp (med.5) = (31-24,90)^2/11 = 0,55º
Dp (med.6) = (32-24,90)^2/11 = 0,65º
Dp (med.7) = (19-24,90)^2/11 = 0,54º
Dp (med.8) = (21-24,90)^2/11 = 0,35º
Dp (med.9) = (30-24,90)^2/11 = 0,46º
Dp (med.10) = (31-24,90)^2/11 = 0,55º
Dp