Otimização transporte de água
Uma grande parte dos problemas atuais no campo das engenharias podem ser hoje resolvidos através de métodos de otimização que consistem em técnicas computacionais que visam a busca dos melhores resultados possíveis ou simplesmente os que melhor se adaptam ás restrições do problema. Têm grande aplicabilidade em sistemas onde, através das funções objetivo, desejamos um ou uma série de valores que proporcionam um melhor desempenho, uma minimização de custos ou até uma maximização de produção, por exemplo. Pode-se utilizar otimização em várias áreas, como por exemplo, no projeto de sistemas ou componentes, planejamento e análise de operações, problemas de otimização de estruturas, otimização de forma, controle de sistemas dinâmicos. Suas grandes vantagens são: determinar a melhor configuração de projeto sem ter que testar todas as possibilidades envolvidas, diminuir o tempo dedicado ao projeto, possibilitar o tratamento simultâneo de uma grande quantidade de variáveis e restrições de difícil visualização gráfica e/ou tabular, possibilitar a obtenção de algo melhor e obtenção de soluções não tradicionais. Tem como limitação o aumento do tempo computacional quando se aumenta o número de variáveis do projeto, pode-se surgir funções descontínuas que apresentam lenta convergência, funções com presença de muitos mínimos locais, onde o mínimo global é raramente obtido.
A sofisticação dos recursos computacionais, desenvolvidos nos últimos anos, têm motivado um grande avanço nas técnicas de otimização, aliado ao fato de que os problemas tornam-se cada vez mais complexos. Numa classificação generalizada, existem basicamente três tipologias gerais de métodos de otimização: métodos probabilísticos, numéricos e enumerativos. Há ainda um grande número de métodos híbridos. Neste trabalho abordaremos os Algoritmos Genéticos, que pertencem á classe dos métodos probabilísticos de busca e otimização, embora não sejam aleatórios, pelo contrário, os AG’s tentam