Nao sei como explicar
Mpm+MpM+Mpb+MN=0, sendo Mpm = Momento do peso do corpo de massa m; MpM = Momento do peso do corpo de massa M; Mp = Momento do peso da barra; MN = Momento da força Normal.
Considerando-se que, o centro de massa da barra esteja exatamente no ponto de apoio especificado da figura, a distância entre a força Normal e o ponto de apoio é zero, assim como a distância entre o vetor peso e o mesmo ponto de apoio.
E, sendo torque = F.d.senθ, onde senθ = seno do ângulo que a força faz com o plano da barra (geralmente horizontal):
Pm.rm.sen90°+PM.rM.sen90°+Pb.0.sen90°+FN.0.sen90° = 0
Sendo Pm = peso do corpo de massa m; PM = peso do corpo de massa M.
O ângulo de 90° (seno = 1) foi utilizado como padrão porque os torques não-nulos (de m e M) estão no mesmo sentido (para baixo). Caso houvesse algum vetor força diferente de N (nulos, pois d = 0) orientado para cima, os ângulos de m e M seriam 270°, o que lhes confeririam sinal negativo na equação.
Portanto a equação final do torque resultante se resume a:
Pm.rm + PM.rM = 0
Para que a soma dê igual a zero, um dos torques tem que ser de sinal negativo. E, como o seno dos ângulos é o mesmo (1), deve-se avaliar o seguinte: caso não houvesse equilíbrio, qual seria o sentido do giro? Aquela força que fizer a barra girar para baixo recebe valor negativo. E, como PM>Pm:
Pm.rm – PM.rM = 0
Pm.rm = PM.rM
Caso a barra tivesse mais de um ponto de apoio, o procedimento seria: escolher um dos pontos e adotá-lo como o ponto de giro (geralmente escolhe-se o ponto mais extremo), e em seguida utilizar no cálculo dos torques as