MODELO banner
Existe uma regra que dá a potência gerada pelos cata-ventos e turbinas de vento. É importante ressaltar que esta regra é teórica e na prática, não conseguimos converter toda essa potência (teórica) em potência útil.
A taxa de conversão é de aproximadamente de 59% , quando o sistema funciona de maneira otimizada.
Tentaremos apresentar de uma forma sucinta a demonstração desta fórmula: Potência é igual ao trabalho (Energia) dividido pelo tempo: , mas o trabalho realizado pelo vento - que neste caso é igual a sua energia cinética - é: , então: , mas como , temos:
onde r é a densidade do ar, V é a velocidade do vento e A é a área varrida pelas hélices do rotor. Talvez seja esta a fórmula mais importante para se conhecer o aproveitamento da energia eólica.
Como exemplo gostaríamos de ilustrar que se um vento passa de 10km/hora para 11 km/hora (aumento de 10% ) a potência se eleva em 33%, o que mostra como é importante a escolha de um lugar com vento mais velozes para o melhor aproveitamento da energia eólica. Outro exemplo é sobre a área varrida pelo rotor. Com um hélice de 3 m de diâmetro e um vento de 32 km/hora teríamos uma potência de 1000 W; se dobrarmos o diâmetro da hélice para 6 m e mantivermos o vento em 32 km/hora a potência irá para 4000 W. Isto ocorre pois a área varia com o quadrado do raio, ou seja, dobrando-se a área do rotor aumentamos a potência em quatro vezes. http://www.fem.unicamp.br/~em313/paginas/eolica/eolica.htm Relação entre velocidade do vento e altura. A velocidade do vento em um determinado local aumenta drasticamente com a altura. A extensão pela qual a velocidade do vento aumenta com a altura é governada por um fenômeno chamado "wind shear". Fricção entre ar mais lentos e mais rápidos conduz ao aquecimento, velocidade do vento mais baixa e muito menos energia de vento disponível perto do solo.
Apresentamos abaixo uma figura que ilustra as diferentes áreas (urbana, subúrbios, ou ao nível