Matrizes

602 palavras 3 páginas
►Adição

As matrizes envolvidas na adição devem ser da mesma ordem. E o resultado dessa soma será também outra matriz com a mesma ordem.

Assim podemos concluir que:

Se somarmos a matriz A com a matriz B de mesma ordem, A + B = C, teremos como resultado outra matriz C de mesma ordem e para formar os elementos de C somaremos os elementos correspondentes de A e B, assim: a11 + b11 = c11.

Exemplos:
Dada a matriz A= 3 x 3 e matriz B= 3 x 3, se somarmos a A + B, teremos:

+ = 3 x 3

Observe os elementos em destaques:

a13 = - 1 e b13 = - 5 ao somarmos esses elementos chegaremos a um terceiro que é o c13 = -6. Pois -1 + (-5) = -1 – 5 = - 6

O mesmo ocorre com os outros elementos, para chegarmos ao elemento c32, tivemos que somar a32 + b32. Pois, 3 + (-5) = 3 – 5 = - 2

Assim: A + B = C, onde C tem a mesma ordem de A e B.

►Subtração

As duas matrizes envolvidas na subtração devem ser da mesma ordem. E a diferença delas deverá dar como resposta outra matriz, mas de mesma ordem.

Assim temos:
Se subtrairmos a matriz A da matriz B de mesma ordem, A – B = C, obteremos outra matriz C de mesma ordem. E para formarmos os elementos de C, subtrairemos os elementos de A com os elementos correspondentes de B, assim: a21 – b21 = c21.

Exemplos:

Dada a matriz A = 3 x 3 e B = 3 x 3, se subtrairmos A – B, teremos:

- = 3 x 3

Observe os elementos destacados:

Quando subtraímos a13 – b13 = c13, -1 – (-5) = -1 + 5 = 4

Quando subtraímos a31 – b31 = c31, - 4 – (-1) = -4 + 1 = -3

http://www.brasilescola.com/matematica/adicao-subtracao-matrizes.htm

A multiplicação de matrizes é realizada de acordo com a seguinte condição: o número de colunas da 1ª matriz deve ser igual ao número de linhas da 2ª matriz. Observe alguns modelos de matrizes que podem ser multiplicadas, considerando o formato m x n.

A4x3 * B3x1

A4x2 * B2x3

A1x2 * B2x2

A3x4 * B4x3

Nesse modelo de multiplicação, os métodos são mais complexos.

Relacionados

  • MATRIZES
    762 palavras | 4 páginas
  • Matrizes
    974 palavras | 4 páginas
  • Matrizes
    818 palavras | 4 páginas
  • Matrizes
    557 palavras | 3 páginas
  • Matrizes
    1021 palavras | 5 páginas
  • matrizes
    1800 palavras | 8 páginas
  • Matrizes
    1815 palavras | 8 páginas
  • Matrizes
    829 palavras | 4 páginas
  • Matrizes
    2533 palavras | 11 páginas
  • Matrizes
    1291 palavras | 6 páginas