Matrizes
Igualdade de Matrizes
Duas matrizes A = (aij)mxn e B = (bij)mxn de mesma ordem, são iguais se, e somente se, aij = bij.
Propriedades da Igualdade
- Se A = B, então At = Bt
- (At)t = A
Adição e subtração de Matrizes
A soma de duas matrizes A = (aij)mxn e B = (bij)mxn de mesma ordem é uma matriz C = (aij)mxn tal que C = aij+ bij.
A subtração de matrizes é dada pela sentença:
A – B = A + (– B )
Propriedades da adição de Matrizes
a) A + B = B + A (COMUTATIVA)
b) (A + B) + C = A + (B + C) (ASSOCIATIVA)
c) A + 0 = 0 + A = A (ELEMENTO NEUTRO)
d) A + (-A) = (-A) + A = 0 (ELEMENTO OPOSTO)
e) (A + B)T = AT + BT (TRANSPOSTA DA SOMA)
Matriz transposta
Dada uma matriz A do tipo m x n, chama-se transposta de A e indica-se por At a matriz que se obtém trocando-se ordenadamente as linhas pelas colunas de A. A operação de obtenção de uma matriz transposta de A é denominada transposição da matriz. Observe o exemplo:
Note que A é do tipo 3 x 2 e At é do tipo 2 x 3 e que, a matriz transposta , a primeira linha corresponde à primeira coluna da matriz original e a segunda linha à segunda coluna, também da matriz original.
Igualdade de matrizes
Duas matrizes, A e B, serão iguais se forem do mesmo tipo e se os elementos correspondentes forem iguais. Assim, se A=(aij) e B=(bij) são matrizes do tipo m x n, então:
Exemplo: determine x e y para que as matrizes A e B sejam iguais
Solução:
Adição de matrizes
Dadas duas matrizes de mesmo tipo, A e B, denomina-se matriz soma (A+B) a matriz obtida adicionando-se os elementos correspondentes de A e B.
Exemplo: Dada as matrizes A e B determine A+B.
Solução:
Propriedades da adição
Sendo A, B, C e O(matriz nula) matrizes de mesmo tipo e p, q ∈ R, valem as propriedades:
- Comutativa: A+B = B+A
- Associativa: A+(B+C) = (A+B)+C
- Elemento neuto: A+O = O+A = A
Matriz oposta
Chama-se matriz oposta de A a matriz –A, cuja soma com A resulta na