Matriz E Determinantes
Em matemática, uma matriz M x N é uma tabela de m linhas e n colunas de símbolos sobre um conjunto, normalmente um corpo, F, representada sob a forma de um quadro. As matrizes são muito utilizadas para a resolução de sistemas de equações lineares e transformações lineares. representação Cada elemento de uma matriz é localizado por dois índices: aij. O primeiro indica a linha, e o segundo, a coluna.
A matriz A pode ser representada abreviadamente por uma sentença matemática que indica a lei de formação para seus elementos.
A = (aij)mxn | lei de formação.
Ex.: (aij)2×3 | aij = i . j
Classificação das Matrizes
Em função dos valores de m e n, classifica-se a matriz A = (aij)mxn em:
Ex.: é uma matriz quadrada de ordem 3.
Numa matriz A = (aij)mxn quadrada de ordem n, os elementos aij com i = j constituem a diagonal principal. Os elementos aij com i + j = n + 1 formam a diagonal secundária.
Tipos de Matrizes
Matriz Nula
É a matriz onde todos os elementos são nulos.
Matriz Oposta
Matriz oposta de uma matriz A = (aij)mxn é a matriz B = (bij)mxn tal que bij = -aij. http://www.colegioweb.com.br/trabalhos-escolares/matematica/matrizes/o-que-sao-matrizes.html Determinantes
Em matemática, determinante é uma função matricial que associa a cada matriz quadrada um escalar; ela transforma essa matriz em um número real.1 Esta função permite saber se a matriz tem ou não inversa, pois as que não têm são precisamente aquelas cujo determinante é igual a 0.
O determinante de uma Matriz é dado pelo valor numérico resultante da subtração entre o somatório do produto dos termos da diagonal principal e do somatório do produto dos termos da diagonal secundária. Nas matrizes quadradas de ordem 3x3 esses cálculos podem ser efetuados repetindo-se a 1ª e a 2ª coluna, aplicando em seguida a regra de Sarrus. Lembrando que uma matriz é quadrada quando o número de linhas é igual ao número de colunas.
Observe o cálculo de determinantes nas seguintes matizes quadradas de ordem 2x2 e 3x3: