Matemática
1
Teoria dos conjuntos
Teoria dos conjuntos é o ramo da matemática que estuda conjuntos, que são coleções de elementos. Embora qualquer tipo de elemento possa ser reunido em um conjunto, a teoria dos conjuntos é aplicada na maioria das vezes a elementos que são relevantes para a matemática. A linguagem da teoria dos conjuntos pode ser usada nas definições de quase todos os elementos matemáticos.
O estudo moderno da teoria dos conjuntos foi iniciado por Georg
Cantor e Richard Dedekind em 1870. Após a descoberta de paradoxos na teoria ingênua dos conjuntos, numerosos sistemas de axiomas foram propostos no início do século XX, dos quais os axiomas de
Zermelo-Fraenkel, com o axioma da escolha, são os mais conhecidos.
Um diagrama de Venn ilustrando a interseção de dois conjuntos.
Conceitos de teoria dos conjuntos são integrados em todo currículo de matemática nos Estados Unidos. Fatos elementares sobre conjuntos e associação de conjuntos são frequentemente ensinados na escola primária, junto com diagramas de Venn, diagramas de Euler, e as operações elementares, tais como união e interseção de conjunto.
Conceitos ligeiramente mais avançados, tais como cardinalidade são uma parte padrão do currículo de matemática de graduação. A teoria dos conjuntos é comumente empregada como um sistema precursor da matemática, particularmente na forma de teoria dos conjuntos de Zermelo-Fraenkel com o axioma da escolha. Além de seu papel fundamental, a teoria dos conjuntos é um ramo da matemática em si própria, com uma comunidade de pesquisa ativa. Pesquisas contemporâneas em teoria dos conjuntos incluem uma diversa coleção de temas, variando da estrutura do número real ao estudo da consistência de grandes cardinais.
A lógica de classes, que pode ser considerada um pequeno fragmento da teoria dos conjuntos com importância histórica é isomorfa à lógica proposicional clássica e à álgebra booleana, e como tal, os teoremas de uma das