matematico
Produto notável diz que um binômio elevado ao quadrado é igual ao quadrado do primeiro monômio mais duas vezes o primeiro, vezes o segundo monômio mais o quadrado do segundo monômio.
(a + b)2 = a2 + 2ab + b2
Essa forma só é válida se o binômio for elevado ao quadrado (potência 2), se ele estiver elevado à potência 3, devemos fazer o seguinte:
(a + b)3 é o mesmo que (a + b)2 . (a + b), como sabemos que (a + b)2 = a2 + 2ab + b2, basta substituirmos:
(a + b)3 =
(a + b)2 . (a + b) =
(a2 + 2ab + b2) . (a + b) = a3 + 3a2b + 3ab2 + b2
E se for elevado à quarta, à quinta, à sexta potência, devemos utilizar sempre o binômio elevado à potência anterior para resolver.
O binômio de Newton veio pra facilitar esses cálculos, pois com ele calculamos a enésima potência de um binômio.
O estudo de Binômio de Newton engloba:
- Coeficientes Binomiais e suas propriedades
- Triângulo de Pascal e suas propriedades
- Fórmula do desenvolvimento do binômio de Newton .
Podemos relacionar os coeficientes binomiais em uma tabela chamada de triângulo de Pascal ou Tartaglia. Relembrando que definimos o coeficiente binomial utilizando a seguinte relação em que n está sobre p e indicamos por:
No triângulo de Pascal podemos observar a seguinte situação: os coeficientes de mesmo numerador (n) encontram-se na mesma linha e o denominador (p), na mesma coluna.
Ao calcularmos os valores dos coeficientes obtemos uma nova representação para o triângulo, veja:
Na mesma linha, os números equidistantes dos extremos são iguais.
A partir da 2º linha formamos a próxima, basta aplicarmos a relação de Stifel, que diz: cada elemento é formado através da soma de dois elementos da linha anterior. Observe:
Soma dos elementos de cada linha
Note que os elementos de cada linha podem ser somados através de uma