Matematica financeira
MATEMÁTICA FINANCEIRA PROF. DANIEL DE SOUZA INTRODUÇÃO: O PRINCIPAL CONCEITO QUE ORIENTARÁ TODO O NOSSO RACIOCÍNIO AO LONGO DESTE CURSO É O CONCEITO DO VALOR DO DINHEIRO NO TEMPO. EMPRÉSTIMOS OU INVESTIMENTOS REALIZADOS NO PRESENTE TERÃO SEU VALOR AUMENTADO NO FUTURO. INVERSAMENTE, VALORES DISPONÍVEIS NO FUTURO, SE CONSIDERARMOS OU AVALIARMOS NO PRESENTE, TERÃO SEUS VALORES REDUZIDOS. GRAFICAMENTE:
DINHEIRO
i
TEMPO
2
JUROS SIMPLES: JURO: O CONCEITO DE JURO É DADO PELA DIFERENÇA ENTRE O RESGATE DE UM INVESTIMENTO E O CAPITAL INVESTIDO. NOTAÇÃO: J TAXA DE JURO: É O COEFICIENTE DE PROPORCIONALIDADE ENTRE O JURO E O CAPITAL CEDIDO. A TAXA DE JURO EXPRESSA A RELAÇÃO DE GRANDEZA EXISTENTE ENTRE O JURO E O RECURSO FINANCEIRO QUE O MESMO REMUNERA. NOTAÇÃO: i A TAXA DE JURO PODE APRESENTAR-SE DE DUAS FORMAS: CENTESIMAL: EX: i = 0,10 OU PERCENTUAL EX: i = 10% VALOR PRESENTE : VALOR DISPONÍVEL PARA SER EMPRESTADO. DINHEIRO. CONHECIDO SOB DIVERSAS FORMAS, TAIS COMO: PRINCIPAL, CAPITAL, VALOR ATUAL, VALOR PRESENTE, VALOR DISPONÍVEL, VALOR REAL, ETC. NOTAÇÃO: PV
3
VALOR FUTURO: TAMBÉM CHAMADO DE VALOR FUTURO, O MONTANTE É EMPREGADO PARA CARACTERIZAR O ACRÉSCIMO DE JURO SOBRE O VALOR PRESENTE OU CAPITAL. NOTAÇÃO: FV NÚMERO DE PERÍODOS: É O PRAZO EM QUE O CAPITAL FICA DISPONÍVEL PARA O TOMADOR DO RECURSO. DETERMINARÁ, EM CONJUNTO COM A TAXA DE JUROS E O VALOR TOMADO COMO EMPRÉSTIMO (CAPITAL) O VALOR DO JURO E DO MONTANTE. NOTAÇÃO: n QUADRO RESUMO DAS NOTAÇÕES: JURO = J TAXA DE JURO = i VALOR PRESENTE = PV VALOR FUTURO = FV NÚMERO DE PERÍODOS = n FÓRMULAS FV = PV . (1 + i.n)
PV = FV (1 + i.n)
J = FV - PV J = PV . i . n
EXEMPLOS: 1. SUPONHAMOS QUE SE TOME EMPRESTADA A QUANTIA DE $ 1.000,00 PELO PRAZO DE 2 ANOS E À TAXA DE 10% A.A. QUAL SERÁ O VALOR A SER PAGO COMO JURO? 2. QUANTO RENDE UM PRINCIPAL DE $ 100,00 APLICADO À TAXA DE 5% AO SEMESTRE E POR UM PRAZO DE 2 ANOS? 3. QUAL É O MONTANTE DE UM CAPITAL DE $ 1.000,00 APLICADO À TAXA DE 10% A.A.