matematica financeira
Capitalização simples é aquela em que a taxa de juros incide somente sobre o capital inicial, não incide, pois, sobre os juros acumulados. a taxa varia linearmente em função do tempo. Se quisermos converter a taxa diária em mensal, basta multiplicar a taxa diária por 30; se desejarmos uma taxa anual e tendo a mensal, basta multiplicar por 12, e assim por diante.
CALCULO DOS JUROS:
Valor dos juros é obtido da expressão: J = Cx i x n onde: j = valor dos juros
C = valor do capital inicial ou principal i = taxa n = prazo
M = montante final
EXEMPLO DE APLICAÇÃO:
1 - Qual o valor dos juros correspondentes a um empréstimo de R$ 10.000,00, pelo prazo de 15 meses, sabendo-se que a taxa cobrada é de 3% a m.?
Dados:
C = 10.000,00 n = 15 meses i = 3% a m. j = ? solução: j = C x i x n j = 10.000,00 x 0,03 (3/100) x 15 = 4.500,00
2 - Um capital de R$ 25.000,00, aplicado durante 10 meses, rende juros de R$ 5.000,00. Determinar a taxa correspondente?
C = 25.000,00 j = 5.000,00 n = 10 meses i = ? solução: j = C x i x n i = J / C x n = 5.000,00/25.000,0 x10 = 0,02 ou 2% a. m.
3 - Uma aplicação de R$ 50.000,00 pelo prazo de 180 dias obteve um rendimento de R$ 8.250,00. Indaga-se: Qual a taxa anual correspondente a essa aplicação?
C = 50.000,00 j = 8.250,00 n = 180 dias i = ? solução: i = j / C x n i = 8.250,00 / 50.000,00 x 180 = 0,00091667, ou 0,091667% ao dia.
Taxa anual = 360 x 0,00091667 = 0,33 ou 33% a a
Observação: Quando o prazo informado for em dias, a taxa resultante dos cálculos será diária; se o prazo for em meses, a taxa será mensal; se for em trimestre, a taxa será trimestral, e assim sucessivamente.