Lógica de Primeira ordem
1. Sintaxe
Introdução
A linguagem da lógica proposicional não é adequada para representar relações entre objetos. Por exemplo, se fôssemos usar uma linguagem proposicional para representar "João é pai de Maria e José é pai de João" usaríamos duas letras sentenciais diferentes para expressar idéias semelhantes (por exemplo, P para simbolizar "João é pai de Maria "e Q para simbolizar "José é pai de João" ) e não estaríamos captando com esta representação o fato de que as duas frases falam sobre a mesma relação de parentesco entre João e Maria e entre José e João. Outro exemplo do limite do poder de expressão da linguagem proposicional, é sua incapacidade de representar instâncias de um propriedade geral. Por exemplo, se quiséssemos representar em linguagem proposicional "Qualquer objeto é igual a si mesmo " e "3 é igual a 3", usaríamos letras sentenciais distintas para representar cada uma das frases, sem captar que a segunda frase é uma instância particular da primeira. Da mesma forma, se por algum processo de dedução chegássemos à conclusão que um indivíduo arbitrário de um universo tem uma certa propriedade, seria razoável querermos concluir que esta propriedade vale para qualquer indivíduo do universo. Porém, usando uma linguagem proposicional para expressar "um indivíduo arbitrário de um universo tem uma certa propriedade " e "esta propriedade vale para qualquer indivíduo do universo" usaríamos dois símbolos proposicionais distintos e não teríamos como concluir o segundo do primeiro.
A linguagem de primeira ordem vai captar relações entre indivíduos de um mesmo universo de discurso e a lógica de primeira ordem vai permitir concluir particularizações de uma propriedade geral dos indivíduos de um universo de discurso, assim como derivar generalizações a partir de fatos que valem para um indivíduo arbitrário do universo de discurso. Para ter tal poder de expressão, a linguagem de primeira ordem vai usar um arsenal de