LISTA PARA A N1 PO
Prof André Luiz
MODELAGEM E SOLUÇÃO PELO EXCEL:
1) Uma companhia de aluguel de caminhões possuía-os de dois tipos: o tipo A com 2 metros cúbicos de espaço refrigerado e 4 metros cúbicos de espaço não refrigerado e o tipo B com 3 metros cúbicos refrigerados e 3 não refrigerados. Uma fábrica precisou transportar 90 metros cúbicos de produto refrigerado e 120 metros cúbicos de produto não refrigerado. Quantos caminhões de cada tipo ela deve alugar, de modo a minimizar o custo, se o aluguel do caminhão A era $0,30 por km e o do B, $0,40 por km. Elabore o modelo de programação linear.
2) A Fábrica de Rádios Sinval Vulah S.A. fabrica os modelos A, B e C que tem contribuição ao lucro de $16, $30 e $50, respectivamente. As exigências de produção mínima semanal são 20.000 para o modelo A, 120.000 para o modelo B e 60.000 para o modelo C. Cada tipo de rádio requer uma certa quantidade de tempo para fabricação das partes componentes, para a montagem e para embalagem. Especificamente, uma unidade do modelo A requer 0.3 horas para fabricar, 0.4 horas para montar e 0.1 para embalar. Os números correspondentes para uma unidade do modelo B são 0.4, 0.5 e 0.2, e para uma unidade do modelo C são 0.5, 0.8 e 0.3. Durante a próxima semana, a fábrica tem disponíveis 120.000 horas de tempo de fabricação, 160.000 horas de montagem e 48.000 horas de embalagem. Formule o modelo e resolva utilizando o solver.
3) Uma oficina mecânica deseja alocar o tempo ocioso disponível em suas máquinas para a produção de 3 produtos. A tabela abaixo dá as informações sobre as necessidades de horas de máquina para produzir uma unidade de cada produto, assim como a disponibilidade das máquinas, o lucro dos produtos e a demanda máxima existente no mercado. Deseja-se o esquema semanal de produção de lucro máximo.
4) Uma empresa tem três tipos de máquinas de processamento, tendo cada uma delas velocidade e taxas de defeitos diferentes. As máquinas do tipo I podem produzir 20