Lei dos Senos e dos Cossenos
Considere um triângulo ABC qualquer de lados a, b e c:
Para esses triângulos podemos escrever:
Em qualquer triângulo quando um lado é igual à soma dos quadrados dos outros dois, menos duas vezes o produto desses dois lados pelo cosseno do ângulo formado por eles.
Lei dos Senos
A lei dos senos estabelece a relação entra a mediada de um lado e o seno do ângulo oposto a esse lado. Para um triângulo ABC de lados a, b, c, podemos escrever.
A lei dos senos determina que a razão entre a medida de um lado e o seno do ângulo oposto é constante em um mesmo triângulo.
Curiosidades sobre a lei do seno
Trigonometria esférica[editar | editar código-fonte]
Ver artigo principal: Trigonometria esférica
Lei dos senos para um triângulo esférico
Em um triângulo esférico existe uma lei muito parecida:
A lei dos senos na trigonometria plana é o caso limite desta lei; o triângulo plano é o limite de um triângulo esférico quando os lados tendem a zero, e, no limite, .
Função seno
Chamamos de função seno a função f(x) = sen x
O domínio dessa função é R e a imagem é Im [ -1,1] ; visto que, na circunferência trigonométrica o raio é unitário e, pela definição do seno, –1 £ sen x £ 1, ou seja:
Domínio de f(x) = sen x; D(sen x) = R.
Imagem de f(x) = sen x; Im(sen x) = [ -1,1] .
Sinal da Função: Como seno x é a ordenada do ponto-extremidade do arco:1 f(x) = sen x é positiva no 1° e 2° quadrantes (ordenada positiva) f(x) = sen x é negativa no 3° e 4° quadrantes (ordenada negativa)
Observe que esse gráfico é razoável, Pois:
Quando, 1º quadrante, o valor de sen x cresce de 0 a 1.
Quando, 2º quadrante, o valor de sen x decresce de 1 a 0.
Quando, 3º quadrante, o valor de sen x decresce de 0 a -1.
Quando, 4º quadrante, o valor de sen x cresce de -1 a 0.]
Função cosseno
Chamamos de função cosseno a função f(x) = cos x.
O domínio dessa função é R e a imagem é Im [ -1,1] ; visto que, na circunferência