Lei Dos Senos E Cossenos
Utilizamos a lei dos cossenos nas situações envolvendo triângulos não retângulos, isto é, triângulos quaisquer. Esses triângulos não possuem ângulo reto, portanto as relações trigonométricas do seno, cosseno e tangente não são válidas. Para determinarmos valores de medidas de ângulos e medidas de lados utilizamos a lei dos cossenos, que é expressa pela seguinte lei de formação:
Exemplo 1
Utilizando a lei dos cossenos, determine o valor do segmento x no triângulo a seguir:
a² = b² + c² – 2 * b * c * cos?
7² = x² + 3² – 2 * 3 * x * cos60º
49 = x² + 9 – 6 * x * 0,5
49 = x² + 9 – 3x x² –3x – 40 = 0
Aplicando o método resolutivo da equação do 2º grau, temos:
x’ = 8 e x” = – 5, por se tratar de medidas descartamos x” = –5 e utilizamos x’ = 8. Então o valor de x no triângulo é 8 cm.
Exemplo 2
Em um triângulo ABC, temos as seguintes medidas: AB = 6 cm, AC = 5 cm e BC = 7 cm. Determine a medida do ângulo A.
Vamos construir o triângulo com as medidas fornecidas no exercício.
Aplicando a lei dos cossenos
a = 7, b = 6 e c = 5
7² = 6² + 5² – 2 * 6 * 5 * cos A
49 = 36 + 25 – 60 * cos A
49 – 36 – 25 = –60 * cos A
–12 = –60 * cos A
12 = 60 * cos A
12/60 = cos A cos A = 0,2
O ângulo que possui cosseno com valor aproximado de 0,2 mede 78º.
Exemplo 3
Calcule a medida da maior diagonal do paralelogramo da figura a seguir, utilizando a lei dos cossenos.
cos 120º = – cos(180º – 120º) = – cos 60º = – 0,5
x² = 5² + 10² – 2 * 5 * 10 * ( – cos 60º) x² = 25 + 100 – 100 * (–0,5) x² = 125 + 50 x² = 175
√x² = √175 x = √5² * 7 x = 5√7
Portanto, a diagonal do paralelogramo mede 5√7 cm.
LEI DOS SENOS
Os estudos trigonométricos no triângulo retângulo têm por finalidade relacionar os ângulos do triângulo com as medidas dos lados, por meio das seguintes relações: seno, cosseno e tangente. Essas relações utilizam o cateto oposto, o cateto adjacente e a hipotenusa. Observe:
Seno: cateto oposto / hipotenusa
Cosseno: cateto adjacente /