Introdução a lógica
Lógica, originalmente, é a ciência formal que estuda as leis necessárias à construção de um raciocínio perfeito. Hoje seu campo de estudo é muito mais amplo, abrangendo das ciência da computação à matemática. Mas trataremos primeiramente da questão dos raciocínios.
Sobre os Raciocínios[editar | editar código-fonte]
Quando falamos em raciocínios, devemos deixar claro que para a lógica são irrelevantes quaisquer considerações psicológicas acerca do ato de raciocinar. O que importa é a forma dos raciocínios. Portanto, vamos defini-los assim:
Um raciocínio é uma lista de proposições, sendo que a última é chamada de conclusão (geralmente distinguida das outras por palavras como “logo” e “portanto”, ou pelo símbolo _\therefore ) e é derivada das demais, as quais são chamadas de premissas.
Eis um argumento:
Ontem João bebeu dois copos de cerveja.
Ontem João também bebeu uma taça de vinho.
Portanto, João passou mal ontem.
Contudo, podemos indagar: O que garante que João passou mal? E se dois copos de cerveja e uma taça de vinho não são suficiente para que João passe mal? Por que não concluir, por exemplo, “Portanto, João ficou levemente embriagado” ?
Observe ainda que podemos estabelecer uma infinidade de métodos de derivação. Poderíamos simplesmente estipular o seguinte: Escolha aleatoriamente algumas palavras de cada premissa e então formule como conclusão qualquer proposição arbitrária bem construída.
Isto permitiria derivar das premissas “Ontem João bebeu dois copos de cerveja” e “Ontem João também bebeu uma taça de vinho”, uma conclusão como “Anteontem João bebeu uma taça de cerveja”.
A lógica foi desenvolvida para, entre outras coisas, determinar quais raciocínios são ou não válidos, e quais métodos de derivação garantem raciocínios válidos. Mas o que é um raciocínio válido? Bem, vários critérios de validade podem ser estipulados, tais como a relevância da conclusão em relação às premissas, ou a