iausha
12755 palavras
52 páginas
´Departamento de Matematica
Probabilidades e Estat´ ıstica Exerc´ ıcios Revisto em Fevereiro de 2010 por Carlos Daniel Paulino, Paulo Soares e Giovani Silva.
Formul´rio a P (X = x) =
n x p (1 − p)n−x x P (X = x) =
x = 0, 1, . . . , n
x = 1, 2, . . .
E(X) = V ar(X) = λ
N −M n−x M x P (X = x) =
N n M
N
V ar(X) = n
fX (x) = √
S2 =
2
¯
Xi − X
E(X) =
(n − 1)S 2
∼ χ2
(n−1)
σ2
1 λ V ar(X) =
¯
¯
X1 − X2 − (µ1 − µ2 )
2
σ1 n1 +
¯
¯
X1 − X2 − (µ1 − µ2 )
a
∼ N (0, 1)
2
S2
n2
2
2
(n1 −1)S1 +(n2 −1)S2 n1 +n2 −2
(Oi − Ei )2 a 2
∼ χ(k−m−1)
H0
Ei i=1 1 n1 r
s
ˆ
ˆ¯
¯ β0 = Y − β1 x
Y i = β 0 + β 1 xi + εi
ˆ β1 =
xi Yi − n¯Y x¯ i=1 n i=1 n 1
ˆ
ˆ
ˆ 2 ˆ σ =
ˆ
Yi − Yi , Yi = β0 + β1 xi n − 2 i=1
+
x2 x2 −n¯2 x i
σ2
ˆ
ˆ β1 − β1
i=1 i=1 x2 i i=1
ˆ
¯
− nY 2 − β1
1 n xi Yi − n¯Y x¯ − n¯2 × x x2 − n¯2 x i
2
n i=1 x2 − n¯2 x i
ˆ
ˆ
β0 + β1 x0 − (β0 + β1 x0 )
∼ t(n−2)
σ2
ˆ
x2 −n¯2 x i
n
Yi2
2
n
R2 =
n
1 σ =
ˆ
n−2
2
∼ t(n−2)
∼ t(n1 +n2 −2)
1 n2 +
n
1 n ∼ N (0, 1)
(Oij − Eij )2 a 2
∼ χ(r−1)(s−1)
H0
Eij i=1 j=1
k
ˆ β0 − β0
2 σ2 n2
1 λ2 n−1
¯
¯
X1 − X2 − (µ1 − µ2 )
+
fX (x) = λe−λx , x ≥ 0
V ar(X) = σ 2
n i=1 (1 − p) p2 V ar(X) =
M N −M N −n
N
N N −1
¯
X −µ
√ ∼ t(n−1)
S/ n
¯
X −µ
√ ∼ N (0, 1) σ/ n
1 p 1
,a≤x≤b
b−a b+a (b − a)2
E(X) =
V ar(X) =
2
12
1
(x − µ)2 exp −
,x∈I
R
2σ 2
2πσ 2
E(X) = µ
2
S1
n1
E(X) =
fX (x) =
x = max {0, n − N + M } , . . . , min {n, M }
E(X) = n
P (X = x) = p(1 − p)x−1
x = 0, 1, . . .
V ar(X) = np(1 − p)
E(X) = np
e−λ λx x! n i=1 2
¯
Yi2 − nY 2
+
(¯−x0 )2 x x2 −n¯2 x i
σ2
ˆ
∼ t(n−2)
Cap´ ıtulo 1
Estat´
ıstica descritiva
1.1 Uma