gleba
P_x \cdot V = n_x \cdot R \cdot T,
onde P_x é a pressão parcial de um gás x qualquer (ou seja, a pressão que ele teria caso estivesse apenas ele no recipiente), V é o volume ocupado pela mistura, n_x é o número de mols do gás, R é a constante dos gases perfeitos, e T a temperatura em kelvin.
Rearranjando a equação, teremos:
\frac{n_x}{V} = \frac{P_x}{R \cdot T}
O membro esquerdo (n_x/V) é a fórmula para o cálculo da concentração molar do gás. A constante R é sempre a mesma e a temperatura T não varia em um sistema que permanece em equilíbrio químico, assim o único fator que pode variar na equação em um equilíbrio é a pressão parcial P_x. Dessa forma pode-se dizer que a concentração do gás é proporcional à sua pressão parcial.
Com base nisso, também é possível escrever a fórmula da constante de equilíbrio usando-se as pressões parciais dos gases envolvidos, no lugar de suas concentrações. Por exemplo:
H2(g) + I2(g) \rightleftharpoons 2HI(g) K_p = \frac{\left (P_{HI} \right )^2}{P_{H_2} \cdot P_{I_2}}
Observe-se que agora a constante de equilíbrio está representada por K_p, em vez de K_c (quando o cálculo foi feito usando-se as concentrações dos gases). Essas duas constantes para um mesmo caso possuem valores diferentes uma da outra, então é importante especificar qual das duas se está usando quando se está lidando com um equilíbrio.
Adição ou remoção de reagentes (Não serve para sólidos)
Ao se alterar a quantidade de uma substância, também se está mexendo na velocidade em que a reação se processa (pois se estará mudando as chances de as substâncias reagirem entre si). Dessa forma, a velocidade das reações direta e inversa deixa de ser igual: se uma substância foi retirada de uma das reações, essa passará a ser mais lenta; e, analogamente, ela passará a ser mais rápida se uma substância for adicionada a ela. Assim ocorre que se algo for acrescentado, o